[1]Nukui, T., & Onogi, A. (2023). An R package for ensemble learning stacking.Bioinformatics Advances, 3(1), vbad139.
[2] Wakayama, T., & Sugasawa, S. (2024). Ensemble Prediction via Covariate-dependent Stacking. arXiv preprint arXiv:2408.09755.
[3]Nukui, T., & Onogi, A. (2023). An R package for ensemble learning stacking.Bioinformatics Advances, 3(1), vbad139.
[4] Vakayil, A., & Joseph, V. R. (2022). Data twinning. Statistical Analysis and Data Mining:The ASA Data Science Journal, 15(5), 598-610.
[5] Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019, July). Optuna: A next-generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 2623-2631).
[6] Miri Choi. (2017). Medical Cost Personal Datasets. Kaggle. 2024.09.23. Aviailable From:
https://www.kaggle.com/datasets/mirichoi0218/insurance
[7] MIKHAIL. (2024). Walmart Sales. Kaggle. 2024.12.10. Aviailable From:
https://www.kaggle.com/datasets/mikhail1681/walmart-sales
[8] KS MOOI.(2024).Walmart Sales Prediction (Stacked Ensemble Model). Kaggle. 2024.12.20.Aviailable From:
https://www.kaggle.com/code/ksmooi/walmart-sales-prediction-stacked-ensemble-model
[9] Munum (2021). Superconductor Dataset. Kaggle. 2024.09.23. Aviailable From:
https://www.kaggle.com/datasets/munumbutt/superconductor-dataset