Abstract: In random matrix theory the role of the inverse temperature is played by the parameter beta, which takes values 1/2/4 when we deal with real/complex/quaternionic matrices. In this course we explain how one can take beta to be an arbitrary positive real and what does it mean to add, multiply, or cut corners from general beta random matrices. Both low temperature and high temperature asymptotics will be discussed and will lead to intriguing limiting objects.
Title: Some aspects of noninteracting trapped fermions at finite temperature
Abstract: Noninteracting fermions in a 1D confining potential form arguably one of the simplest models in many-body quantum statistical physics. In this mini-course, we will review some of the methods used to study them, with an emphasis on their edge fluctuations at finite temperature.
Abstract: Stochastic vertex models in the quadrant have been very topical in integrable probability in the last decade, with a host of reductions to one-dimensional particle processes. In this course we examine the combinatorial implications of placing these models on a cylinder. Connections to (non)symmetric Macdonald theory and LLT polynomials will be discussed, as well as the difficult problem of expanding one family of symmetric functions in terms of another.