Mock
6:00pm-7:30pmMock
6:00 pm - 7:30pmMock
6:00 pm - 7:30pmMock
6:00 pm - 7:30pmQuestionbank
Questionbank 1Questionbank 2Questionbank 3Questionbank 4Questionbank 5Topic Exercises
Topic 1Topic 2Topic 3Topic 4Topic 5Questionbank
Questionbank 1Questionbank 2Questionbank 3Questionbank 4Questionbank 5Topic Exercises
Topic 1Topic 2Topic 3Topic 4Topic 5Questionbank
Questionbank 1Questionbank 2Questionbank 3Questionbank 4Questionbank 5Exam exercises (by Topic)
Topic 1Topic 2Topic 3Topic 4Topic 5Questionbank
Questionbank 1Questionbank 2Questionbank 3Questionbank 4Questionbank 5Exam exercises (by Topic)
Topic 1Topic 2Topic 3Topic 4Topic 5TOPIC 1 - Algebra
1.1
1.2
1.3
Topic 2 - Functions and equations
2.1
2.2
y = f (x )2.3
2.4
2.5
2.6
2.7
2.8
Topic 3 - Circular functions and trigonometry
3.1
The circle: radian measure of angles; length of an arc; area of a sector.3.2
3.3
The Pythagorean identity cos^2θ+sin^2θ=1Double angle identities for sine and cosine.Relationship between trigonometric ratios3.4
3.5
3.6
4.1
4.2
4.3
Vector equation of a line in two and three dimensions: r=a+tbr=a+tb.The angle between two lines.4.4
Distinguishing between coincident and parallel lines.Finding the point of intersection of two lines.Determining whether two lines intersect.Topic 5 - Statistics and probability
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
Normal distributions and curves.Standardization of normal variables (z-values, z-scores).Properties of the normal distribution.6.1
Informal ideas of limit and convergence.Limit notation.Definition of derivative from first principles as f′(x)=lim h→0 (f(x+h)−f(x)h)Derivative interpreted as gradient function and as rate of change.Tangents and normals, and their equations.6.2
6.3
6.4
6.5
Anti-differentiation with a boundary condition to determine the constant term.Definite integrals, both analytically and using technology.Areas under curves (between the curve and the x-axis).Areas between curves.Volumes of revolution about the x-axis.6.6
TOPIC 1 - Algebra
1.1
1.2
1.3
Topic 2 - Functions and equations
2.1
2.2
y = f (x )2.3
2.4
2.5
2.6
2.7
2.8
Topic 3 - Circular functions and trigonometry
3.1
The circle: radian measure of angles; length of an arc; area of a sector.3.2
3.3
The Pythagorean identity cos^2θ+sin^2θ=1Double angle identities for sine and cosine.Relationship between trigonometric ratios3.4
3.5
3.6
4.1
4.2
4.3
Vector equation of a line in two and three dimensions: r=a+tbr=a+tb.The angle between two lines.4.4
Distinguishing between coincident and parallel lines.Finding the point of intersection of two lines.Determining whether two lines intersect.Topic 5 - Statistics and probability
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
Normal distributions and curves.Standardization of normal variables (z-values, z-scores).Properties of the normal distribution.6.1
Informal ideas of limit and convergence.Limit notation.Definition of derivative from first principles as f′(x)=lim h→0 (f(x+h)−f(x)h)Derivative interpreted as gradient function and as rate of change.Tangents and normals, and their equations.6.2
6.3
6.4
6.5
Anti-differentiation with a boundary condition to determine the constant term.Definite integrals, both analytically and using technology.Areas under curves (between the curve and the x-axis).Areas between curves.Volumes of revolution about the x-axis.6.6
Textbook by topics (for teacher use only)
Oxford by topics (for teacher use only)
Properties of Functions
Domain & Ranges, Composites & inverse functions, Max & Mijn Values, intercepts, intersects, Sketching..Universities are still deciding on how to approach the new IB Maths Curriculum. Below shows a sample of 10 Universities and their responses so far…