Haoran Yang, Hongxu Chen*, Sixiao Zhang, Xiangguo Sun, Qian Li, Xiangyu Zhao, Guandong Xu†, “Generating Counterfactual Hard Negative Samples for Graph Contrastive Learning”, The 32nd ACM Web Conference (WWW'2023), Austin, Texas, USA, 30th April-4th May 2023. (CORE A*, CCF A, the first author is Dr. Hongxu Chen's PhD student, Corresponding author and contributing equally with the first author)
Haoran Yang, Hongxu Chen*, Shirui Pan, Lin Li, Philip S Yu and Guandong Xu. "Dual Space Graph Contrastive Learning". The Web Conference 2022 (WWW'22), Lyon, France, April 25th-29th 2021. (Core A*, CCF A , The first author is Dr. Hongxu Chen's PhD student, Corresponding author and contributing equally with the first author) .
Sixiao Zhang, Hongxu Chen*, Xiangguo Sun, Yicong Li and Guandong Xu. "Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation". The Web Conference 2022 (WWW'22), Lyon, France, April 25th-29th 2021. (Core A*, CCF A , The first author is Dr. Hongxu Chen's PhD student, Corresponding author and contributing equally with the first author) .
Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng and Shirui Pan. "Towards Unsupervised Deep Graph Structure Learning". The Web Conference 2022 (WWW'22), Lyon, France, April 25th-29th 2021. (Core A*, CCF A)
Chengkun, Zhang, Hongxu Chen*, Sixiao Zhang, Guandong Xu, Junbin Gao. "Geometric Inductive Matrix Completion: A Hyperbolic Approach with Unified Message Passing". The 15th International Conference on Web Search and Data Mining (WSDM'22). (Corresponding author and contributing equally with the first author).
Haoran, Yang, Hongxu Chen*, Lin Li, Philip S. Yu and Guandong Xu. "Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation". 21st IEEE International Conference on Data Mining December 7-10, 2021. Auckland, New Zealand. (CORE Rank A, The first author is Dr. Hongxu Chen's PhD student, Corresponding author and contributing equally with the first author).
Yicong Li, Hongxu Chen*, Xiangguo Sun, Zhenchao Sun, Lin Li, Lizhen Cui, Phillip Yu and Guandong Xu. "Hyperbolic Hypergraphs for Sequential Recommendation". The 30th ACM International Conference on Information and Knowledge Management (CIKM 2021), Gold Coast, Australia. (CORE Rank A, The first author is Dr. Hongxu Chen's PhD student, Corresponding author and contributing equally with the first author).
Li He, Hongxu Chen*, Shoaib Jameel, Dingxian Wang, Philip Yu and Guandong Xu. "Click-Through Rate Prediction with Multi-Modal Hypergraphs". The 30th ACM International Conference on Information and Knowledge Management (CIKM 2021), Gold Coast, Australia. (CORE Rank A, The first author is Dr. Hongxu Chen's PhD student, Corresponding author and contributing equally with the first author).
Sixiao Zhang, Hongxu Chen*, Xiao Ming, Lizhen Cui, Hongzhi Yin, Guandong Xu. "Where are we in embedding spaces? A Comprehensive Analysis on Network Embedding Approaches for Recommender Systems". The 27th ACM SIGKDD Conference On Knowledge Discovery and Data Mining (KDD'21), Singapore. August, 2021. (CCF Rank A, CORE Rank A*, The first author is Dr. Hongxu Chen's PhD student, Corresponding author and contributing equally with the first author). [Paper] [Poster]
Xiangguo Sun, Bo Liu, Hongxu Chen, Wang Han, Qing Meng, Jiuxin Cao and Hongzhi Yin, Multi-level Hyperedge Distillation for Social Linking Prediction on Sparsely Observed Networks, The Web Conference 2021 (WWW2021) (CORE rank A*, CCF rank A)
Guanhua Ye, Hongzhi Yin, Tong Chen, Hongxu Chen, Lizhen Cui, Xiangliang Zhang. "FENet: A Frequency Extraction Network for Obstructive Sleep Apnea Detection".IEEE Journal of Biomedical and Health Informatics, 2020. (JBHI'20). (Q1 Journal, CORE Rank A*)
Xiangguo Sun, Hongzhi Yin, Bo Liu, Hongxu Chen, Jiuxin Cao, Yingxia Shao and Nguyen Quoc Viet Hung. "Heterogeneous Hypergraph Embedding for Graph Classification". The 14th ACM International WSDM Conference (WSDM'21), March, 2021. ( CORE Rank A*, CCF Rank B, acceptance rate 18.6%).
Hongxu Chen, Yicong Li, Xiangguo Sun, Guandong Xu and Hongzhi Yin. "Temporal Meta-path Guided Explainable Recommendation". The 14th ACM International WSDM Conference (WSDM'21), March, 2021. (CORE Rank A*, CCF Rank B, acceptance rate 18.6%).
Xueyan Liu, Bo Yang, Hechang Chen, Katarzyna Musial, Hongxu Chen, Yang Li, Wanli Zuo. "A Scalable Redefined Stochastic Blockmode". ACM Transactions on Knowledge Discovery from Data (TKDD, SCI, CCF Rank B).
Wenzhuo Song, Hongxu Chen, Xueyan Liu, Hongzhe Jiang, Shengsheng Wang.“Hyperbolic Node Embedding for Signed Networks”. Neurocomputing journal, 2020. (Q1 Journal).
Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys and Katarzyna Musial. "Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction". 26th ACM SIGKDD Conference On Knowledge Discovery and Data Mining (KDD'20), San Diego, USA. August, 2020. (CCF Rank A, CORE Rank A* ) [Code] [Data]
Hongxu Chen, Hongzhi Yin, Tong Chen, Weiqing Wang, Xue Li, Xia Hu. "Social Boosted Recommendation with Folded Bipartite Network Embedding". IEEE Transactions on Knowledge and Data Engineering. 2020. (TKDE'20). (CCF Rank A, ERA Rank A*)
Zhenchao Sun, Hongzhi Yin, Hongxu Chen, Tong Chen, Lizhen Cui, Fan Yang. "Disease Prediction via Graph Neural Networks".IEEE Journal of Biomedical and Health Informatics, 2020. (JBHI'20). (The first author is co-supervised by Dr Hongxu Chen, Q1 Journal, CORE Rank A*)
Shijie Zhang, Hongzhi Yin, Qinyong Wang, Tong Chen, Hongxu Chen, Quoc Viet Hung Nguyen. ”Inferring Substitutable Products with Deep Network Embedding”. IJCAI’19. Macau SAR.China. (CCF Rank A, Core Rank A*)
Yuandong Wang, Hongzhi Yin, Hongxu Chen, Tianyu Wo, Jie Xu and Kai Zheng.”Origin-Destination Matrix Prediction via Graph Convolution: A New Perspective of Passenger Demand Modeling”. KDD’19. Anchorage, Alaska - USA (CCF Rank A, CORE Rank A*).
Hongxu, Chen, Hongzhi Yin, Tong Chen, Quoc Viet Hung Nguye, Wen-Chih Peng, Xue Li. "Exploiting Centrality Information with Graph Convolutions for Network Representation Learning". 35th IEEE International Conference on Data Engineering (ICDE'19), Macau SAR. April, 2019. (CCF Rank A, CORE Rank A* ).
Tong Chen, Hongzhi Yin, Hongxu Chen, Rui Yan, Quoc Viet Hung Nguye, Xue Li. "AIR: Attentional Intention-Aware Recommender Systems". 35th IEEE International Conference on Data Engineering (ICDE'19), Macau SAR. April, 2019. (CCF Rank A, CORE Rank A* ).
Tong Chen, Hongzhi Yin, Hongxu Chen, Lin Wu, Hao Wang, Xiaofang Zhou and Xue Li. "TADA: Trend Alignment with Dual-Attention Multi-Task Recurrent Neural Networks for Sales Prediction". 2018 The IEEE International Conference on Data Mining (ICDM'18), Singapore. August, 2018. (CCF Rank B, CORE Rank A*, Acceptance Rate=8.86%).
Hongxu Chen, Hongzhi Yin*, Weiqing Wang, Hao Wang, Quoc Viet Hung Nguyen, Xue Li. "PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction".2018 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'18), London, United Kingdom. August, 2018. [Code] (CCF Rank A, CORE Rank A*). [ Alternative Pytorch implementation]
Hongzhi Yin, Hongxu Chen, Xiaoshuai Sun, Hao Wang, Yang Wang, and Quoc Viet Hung Nguyen. "SPTF: A Scalable Probabilistic Tensor Factorization Model for Semantic-Aware Behavior Prediction". 2017 IEEE International Conference on Data Mining(ICDM'17), New Orleans, USA, November, 2017. (Acceptance Rate:9.5%, Oral, CORE Rank A*).
Xiaocui Li, Hongzhi Yin, Ke Li, Hongxu Chen, Shazia Sadiq and Xiaofang Zhou. "Semi-supervised Clustering with Deep Metric Learning". The 24th International Conference on Database Systems for Advanced Applications (DASFAA'19, Short paper), Chiang Mai, Thailand. April, 2019. (CCF Rank B)
Tong Chen, Hongxu Chen and Xue Li. "Rumor Detection via Recurrent Neural Networks: A Case Study on Adaptivity with Varied Data Compositions". (PAKDD'18, Melbourne, Australia)
Tong Chen, Hongzhi Yin, Hongxu Chen, Xiaofang Zhou. ”Online Sales Prediction via Trend Alignment based Multi-Task Recurrent Neural Network”. Knowledge and Information Systems (KAIS, Q1 Journal).
Tong Chen, Ling Wu, Yang Wang, Jun Zhang, Hongxu Chen, X Li. "When Point Process Meets RNNs: Predicting Fine-Grained User Interests with Mutual Behavioral Infectivity". (arXiv preprint arXiv:1710.05135)
Hongxu Chen, Hongzhi Yin, Xue Li, Meng Wang, Weitong Chen, Tong Chen. "People Opinion Topic Model: Opinion-based User Clustering in Social Networks", 2017 International World Wide Web Conference Committee (IW3C2), WWW'17 Companion, April 3–7, 2017, Perth, Australia.