A fish (pl.: fish or fishes) is an aquatic, craniate, gill-bearing animal that lacks limbs with digits. Included in this definition are the living hagfish, lampreys, and cartilaginous and bony fish as well as various extinct related groups. Approximately 95% of living fish species are ray-finned fish, belonging to the class Actinopterygii, with around 99% of those being teleosts.

The earliest organisms that can be classified as fish were soft-bodied chordates that first appeared during the Cambrian period. Although they lacked a true spine, they possessed notochords which allowed them to be more agile than their invertebrate counterparts. Fish would continue to evolve through the Paleozoic era, diversifying into a wide variety of forms. Many fish of the Paleozoic developed external armor that protected them from predators. The first fish with jaws appeared in the Silurian period, after which many (such as sharks) became formidable marine predators rather than just the prey of arthropods.


How To Download I Am Fish Game On Pc Free


Download File 🔥 https://ssurll.com/2y7ZSx 🔥



Most fish are ectothermic ("cold-blooded"), allowing their body temperatures to vary as ambient temperatures change, though some of the large active swimmers like white shark and tuna can hold a higher core temperature.[1][2] Fish can acoustically communicate with each other, most often in the context of feeding, aggression or courtship.[3]

Fish are abundant in most bodies of water. They can be found in nearly all aquatic environments, from high mountain streams (e.g., char and gudgeon) to the abyssal and even hadal depths of the deepest oceans (e.g., cusk-eels and snailfish), although no species has yet been documented in the deepest 25% of the ocean.[4] With 34,300 described species, fish exhibit greater species diversity than any other group of vertebrates.[5]

Fish are an important resource for humans worldwide, especially as food. Commercial and subsistence fishers hunt fish in wild fisheries or farm them in ponds or in cages in the ocean (in aquaculture). They are also caught by recreational fishers, kept as pets, raised by fishkeepers, and exhibited in public aquaria. Fish have had a role in culture through the ages, serving as deities, religious symbols, and as the subjects of art, books and movies.

Cladistically, fish and vertebrates are synonymous; tetrapods (amphibians, reptiles, birds and mammals) emerged within lobe-finned fishes, so cladistically they are fish as well. However, traditionally fish (pisces or ichthyes) are rendered paraphyletic by excluding the tetrapods, and are therefore not considered a formal taxonomic grouping in systematic biology, unless it is used in the cladistic sense, including tetrapods,[6][7] although usually "vertebrate" is preferred and used for this purpose (fish plus tetrapods) instead. Furthermore, cetaceans, although mammals, have often been considered fish by various cultures and time periods.

The word for fish in English and the other Germanic languages (German Fisch; Gothic fisks) is inherited from Proto-Germanic, and is related to the Latin piscis and Old Irish asc, though the exact root is unknown; some authorities reconstruct a Proto-Indo-European root *peysk-, attested only in Italic, Celtic, and Germanic.[8][9][10][11]

The English word once had a much broader usage than its current biological meaning. Names such as starfish, jellyfish, shellfish, crayfish/crawfish and cuttlefish attest to almost any fully aquatic animal (including whales) once being fish. "Correcting" such names (e.g. to sea star) is an attempt to retroactively apply the current meaning of fish to words that were coined when it had a different meaning.[citation needed]

Fish, as vertebrata, developed as sister of the tunicata. As the tetrapods emerged deep within the fishes group, as sister of the lungfish, characteristics of fish are typically shared by tetrapods, including having vertebrae and a cranium.

Early fish from the fossil record are represented by a group of small, jawless, armored fish known as ostracoderms. Jawless fish lineages are mostly extinct. An extant clade, the lampreys may approximate ancient pre-jawed fish. The first jaws are found in Placodermi fossils. They lacked distinct teeth, having instead the oral surfaces of their jaw plates modified to serve the various purposes of teeth. The diversity of jawed vertebrates may indicate the evolutionary advantage of a jawed mouth. It is unclear if the advantage of a hinged jaw is greater biting force, improved respiration, or a combination of factors.

Fish may have evolved from a creature similar to a coral-like sea squirt, whose larvae resemble primitive fish in important ways. The first ancestors of fish may have kept the larval form into adulthood (as some sea squirts do today).

Fishes are a paraphyletic group: that is, any clade containing all fish also contains the tetrapods. The latter are not fish, though they include fish-shaped forms, such as Whales and Dolphins (see evolution of cetaceans) or the extinct ichthyosaurs, both of which acquired a fish-like body shape due to secondary aquatic adaptation. In a cladistic sense, tetrapods are a subset of Osteichthyes.

...it is increasingly widely accepted that tetrapods, including ourselves, are simply modified bony fishes, and so we are comfortable with using the taxon Osteichthyes as a clade, which now includes all tetrapods...

Fishes are a paraphyletic group and for this reason, groups such as the class Pisces seen in older reference works are no longer used in formal classifications. Traditional classification divides fish into three extant classes, and with extinct forms sometimes classified within the tree, sometimes as their own classes:[16][17]

The above scheme is the one most commonly encountered in non-specialist and general works. Many of the above groups are paraphyletic, in that they have given rise to successive groups: Agnatha are ancestral to Placodermi, who again have given rise to Osteichthyes, as well as to Acanthodii, the ancestors of Chondrichthyes. With the arrival of phylogenetic nomenclature, the fishes has been split up into a more detailed scheme, with the following major groups:

The position of hagfish in the phylum Chordata is not settled. Phylogenetic research in 1998 and 1999 supported the idea that the hagfish and the lampreys form a natural group, the Cyclostomata, that is a sister group of the Gnathostomata.[18][19]

The various fish groups account for more than half of vertebrate species. As of 2006,[20] there are almost 28,000 known extant species, of which almost 27,000 are bony fish, with 970 sharks, rays, and chimeras and about 108 hagfish and lampreys. A third of these species fall within the nine largest families; from largest to smallest, these families are Cyprinidae, Gobiidae, Cichlidae, Characidae, Loricariidae, Balitoridae, Serranidae, Labridae, and Scorpaenidae. About 64 families are monotypic, containing only one species. The final total of extant species may grow to exceed 32,500.[21] Each year, new species are discovered and scientifically described. As of 2016,[13] there are over 32,000 documented species of bony fish and over 1,100 species of cartilaginous fish. Species are lost through extinction (see biodiversity crisis). Recent examples are the Chinese paddlefish or the smooth handfish.

The term "fish" most precisely describes any non-tetrapod craniate (i.e. an animal with a skull and in most cases a backbone) that has gills throughout life and whose limbs, if any, are in the shape of fins.[23] Unlike groupings such as birds or mammals, fish are not a single clade but a paraphyletic collection of taxa, including hagfishes, lampreys, sharks and rays, ray-finned fish, coelacanths, and lungfish.[24][25] Indeed, lungfish and coelacanths are closer relatives of tetrapods (such as mammals, birds, amphibians, etc.) than of other fish such as ray-finned fish or sharks, so the last common ancestor of all fish is also an ancestor to tetrapods. As paraphyletic groups are no longer recognised in modern systematic biology, the use of the term "fish" as a biological group must be avoided.

A typical fish is ectothermic, has a streamlined body for rapid swimming, extracts oxygen from water using gills or uses an accessory breathing organ to breathe atmospheric oxygen, has two sets of paired fins, usually one or two (rarely three) dorsal fins, an anal fin, and a tail fin, has jaws, has skin that is usually covered with scales, and lays eggs.

Fish species diversity is roughly divided equally between marine (oceanic) and freshwater ecosystems. Coral reefs in the Indo-Pacific constitute the center of diversity for marine fishes, whereas continental freshwater fishes are most diverse in large river basins of tropical rainforests, especially the Amazon, Congo, and Mekong basins. More than 5,600 fish species inhabit Neotropical freshwaters alone, such that Neotropical fishes represent about 10% of all vertebrate species on the Earth. Exceptionally rich sites in the Amazon basin, such as Canto State Park, can contain more freshwater fish species than occur in all of Europe.[35]

The deepest living fish in the ocean so far found is the snailfish (Pseudoliparis belyaevi) which was filmed in the Izu-Ogasawara Trench off the coast of Japan at 8,336 meters in August 2022. The fish was filmed by a robotic lander as part of a scientific expedition funded by Victor Vescovo's Caladan Oceanic with the scientific team led by Professor Alan Jamieson of the University of Western Australia.[36]

The diversity of living fish (finfish) is unevenly distributed among the various groups, with teleosts making up the bulk of living fishes (96%), and over 50% of all vertebrate species.[13] The following cladogram[37] shows the evolutionary relationships of all groups of living fishes (with their respective diversity[13][38]) and the four-limbed vertebrates (tetrapods).

Most fish exchange gases using gills on either side of the pharynx. Gills consist of threadlike structures called filaments. Each filament contains a capillary network that provides a large surface area for exchanging oxygen and carbon dioxide. Fish exchange gases by pulling oxygen-rich water through their mouths and pumping it over their gills. In some fish, capillary blood flows in the opposite direction to the water, causing countercurrent exchange. The gills push the oxygen-poor water out through openings in the sides of the pharynx. Some fish, like sharks and lampreys, possess multiple gill openings. However, bony fish have a single gill opening on each side. This opening is hidden beneath a protective bony cover called an operculum. 006ab0faaa

how to download apps on iphone 5s for free

digital locker rc download

jw library app download for pc

tower of god great journey download

download music jamendo gratis