Regional and global geodynamics data and models

Please find below links to open data and their corresponding open-access publications.


NKG2016LU (model)

The official Fennoscandian land uplift model of the Nordic Geodetic Commission including uncertainties. Includes two forms:

Please see this website and Vestøl et al. (2019), for more information about the model.


NKG2016LU_gdot (model)

The official model of Fennoscandian postglacial gravity change.

Please see this website and Olsson et al. (2019), for more information about the model.


Absolute gravity data in the Nordic and Baltic countries from 1976-2015 (absolute gravity data)

Please see Table 4 in the file above, and Olsson et al. (2019), for more information on the data.


BIFROST 3D velocity field for northern Europe (GNSS data, elastic correction and GIA model)

Supplementary data to Kierulf et al. (2021). File contains elastic corrections, a transformation to the GIA frame and results of a GIA model for northern Europe. Please see Kierulf et al. (2021) for detailed discussion.


Central European GNSS Research Network (CEGRN) dataset (GNSS data)

Please see this website and Zurutuza et al. (2019), for more information on the data and research results.


Global database of glacially induced faults (fault location shapefiles)

A GIS shapefile database of confirmed and proposed glacially induced (also called postglacial) faults around the world. Please see the coming book on "Glacially-Triggered Faulting" for details. Please cite as:

Munier, R., Adams, J., Brandes, C., Brooks, G., Dehls, J., Gibbons, S.J., Hjartardóttir, Á.R., Hogaas, F., Johansen, T.A., Kvaerna, T., Mattila, J., Mikko, H., Müller, K., Nikolaeva, S.B., Ojala, A., Olesen, O., Olsen, L., Palmu, J.-P., Ruskeeniemi, T., Ruud, B.O., Sandersen, P.B.E., Shvarev, S.V., Smith, C.A., Steffen, H., Steffen, R., Sutinen, R., Tassis, G. (2020): International database of Glacially Induced Faults. PANGAEA, https://doi.org/10.1594/PANGAEA.922705


Holocene relative sea-level database for the Baltic Sea (HOLSEA database)

An Excel spreadsheet in the HOLSEA format containing 1000+ index and limiting points around the Baltic Sea. Please cite as indicated on the website behind the link. Database summary can be found in the corresponding paper:

Rosentau, A., Klemann, V., Bennike, O., Steffen, H., Wehr, J., Latinović, M., Bagge, M., Ojala, A., Berglund, M., Peterson Becher, G., Schoning, K., Hansson, A., Nielsen, L., Clemmensen, L.B., Hede, M.U., Kroon, A., Pejrup, M., Sander, L., Stattegger, K., Schwarzer, K., Lampe, R., Lampe, M., Uścinowicz, S., Bitinas, A., Grudzinska, I., Vassiljev, J., Nirgi, T., Kublitskiy, Y., Subetto, D. (2021). A Holocene relative sea-level database for the Baltic Sea. Quat. Sci. Rev. 266, 107071 , https://doi.org/10.1016/j.quascirev.2021.107071


Global vertical land motion from GIA model LM17.3 (GIA model)

Developed during the EGSIEM project. A global 0.5-degree grid of vertical land motion (in mm/a) of an incompressible GIA model. The ice load is different to any other GIA model and combines regional ice loads without taking care of balancing the global sea-level equivalent of all ice sheets and glaciers with that expected from paleo-sea-level indicators. Please cite as:

Steffen, H., Li, T., Wu, P., Gowan, E.J., Ivins, E., Lecavalier, B., Tarasov, L., Whitehouse, P.L. (2021): LM17.3 - a global vertical land motion model of glacial isostatic adjustment. PANGAEA, https://doi.org/10.1594/PANGAEA.932462.

The corresponding geoid change can be downloaded here (same format).


Global surface deformations from 1D compressible GIA models (GIA model)

Global 1-degree grid files of four different surface deformation parameters (3D velocity field and geoid change) calculated from a set of 26 different glacial isostatic adjustment models applying 10 different radially varying (=layered) earth structures and 3 different global ice models. Please cite as:

Steffen, H. (2021). Surface Deformations from Glacial Isostatic Adjustment Models with Laterally Homogeneous, Compressible Earth Structure (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5560862.


Monthly groundwater storage (GWS) changes in North America 04/2002-06/2017

162 months of GWS changes and their uncertainties in 1-degree cells for the whole North American continent plus for 5 major GWS trend anomalies (in Saskatchewan, Nevada, California, Arizona and Texas) and averaged for 14 states or provinces in Canada, the US and Mexico (Saskatchewan, Montana, Nevada, California, Arizona, New Mexico, Texas, Oklahoma, Kansas, Alberta, North Dakota, Minnesota, Colorado and Chihuahuas).

Wang, H., Xiang, L., Steffen, H., Wu, P., Jiang, L., Shen, Q., Li, Z., Hayashi, M. (2021). North America Groundwater Variation Data Products (2002 to 2017). National Tibetan Plateau Data Center, https://doi.org/10.11888/Hydro.tpdc.271654.


Wang, H., Xiang, L., Steffen, H., Wu, P., Jiang, L., Shen, Q., Li, Z., Hayashi, M. (2021). Data Products for Monthly GRACE Derived Groundwater Storage Changes (GWS) in North America from 2002 to 2017. PANGAEA, https://doi.org/10.1594/PANGAEA.937283.



European velocity model EuVeM2022 (velocity grid in different reference frames)


The EUREF Permanent Network Densification (EPND2150) velocity product for more than 4000 GNSS stations in Europe is used in a recent extension of the least-squares collocation technique considering the effects of correlation in horizontal velocities and of known plate boundaries. The horizontal component of the GNSS velocity model is used to estimate strain rates.