Publications
Brusa, L., Pennoni, F., and Bartolucci, F. (2024). Maximum likelihood estimation for discrete latent variable models via evolutionary algorithms, Statistics and Computing, 34, 1-15.
Pennoni, F., Bartolucci, F., Pandolfi, S. (2024). Variable selection for hidden Markov models with continuous variables and missing data. Journal of Classification, https://doi.org/10.1007/s00357-023-09457-9.
Bartolucci, P. Favaro, D. Pennoni, F., Sciulli, D. (2024). An analysis of the effect of streaming on civic participation through a causal hidden Markov model. Social Indicator Research, https://doi.org/10.1007/s11205-023-03261-z
Cortese, F., Pennoni, F., Bartolucci, F. (2024). Maximum likelihood estimation of multivariate regime switching Student-t copula models. International Statistical Review, https://doi.org/10.1111/insr.12562
Pennoni, F., Paas, L.J., Bartolucci, F. (2023). A causal hidden Markov model for assessing effects of multiple direct mail campaigns, TEST, 32, 1336-1364.
Laudicella, M., Li Donni, P., and Prete, v. (2024). Healthcare utilisation by diabetic patients in Denmark: the role of primary care in reducing emergency visits, Health Policy, 145, 105079.
Brusa, L., Matias, C. (2024). Model-based clustering in simple hypergraphs through a stochastic blockmodel, Scandinavian Journal of Statistics, 51, 1661-1684.
Bartolucci, F., Pandolfi, S., and Pennoni, F. (2025). On a class of finite mixture models that includes hidden Markov models, Journal of Multivariate Analysis, 1-14.
Bartolucci, F., and Pennoni, F. (2024). Book Review: “Visser, I. & Speekenbrink, M. Mixture and Hidden Markov Models with R. Springer, Cham, CH.” Psychometrika, 89, 741-743.
Bartolucci, F., Greenacre, M., Pandolfi, S., and Pennoni, F. (2025). Hidden Markov and related discrete latent variable models: An application to compositional data. In: Giordano, G., La Rocca, M., Niglio, M., Restaino, M., Vichi, M. (eds). Studies in Classification, Data Analysis and Knowledge Organization. CLADAG 2023. Springer, pp 1-8.
Brusa L., Pennoni F., Bartolucci F., and Peruilh Bagolini R. (2025). Prediction of early warning crises by a hidden Markov model with covariates. In: Methodological and Applied Statistics and Demography II, SIS 2024, Short Papers, Solicited Sessions, 146–152. ISBN: 978-3-031-64350-7.
Brusa L., Pennoni F., Bartolucci F., and Maggi L. (2025) Dynamic Classification Through Three-Step Estimation: Evidence from a Multinational Longitudinal Study of Myasthenia Gravis Patients. In: Statistics for Innovation II, SIS 2025, Short Papers, Contributed Sessions 1, 270–276. ISBN: 978-3-031-96303-2.
Brusa L., and Pennoni F. (2025) Stochastic Block Model Based on Variational Inference and its Extensions: An Application to Examine Global Migration Dynamics. In: “Nakai, M. (eds). Advances in Quantitative Approaches to Sociological Issues. Behaviormetrics: Quantitative Approaches to Human Behavior, 20, 1–27, Springer, Singapore.” ISBN: 978-981-96-7109-0.
Nakai M., and Pennoni F. (2025) Work-Family Trajectories over the Life Course of Japanese Males and Females: A Transition-Oriented Comparison Using Hidden Markov Models. In: “Nakai, M. (eds). Advances in Quantitative Approaches to Sociological Issues. Behaviormetrics: Quantitative Approaches to Human Behavior, 20, 83–113, Springer, Singapore.” ISBN: 978-981-96-7109-0.
Brusa L., and Pennoni F. (2025). Variational inference for estimating dynamic stochastic block models through an evolutionary algorithm. Advances in Data Analysis and Classification.
Pennoni, F., Pandolfi, S. Bartolucci, F. (2025). LMest: An R Package for Estimating Generalized Latent Markov Models. The R Journal, 74-101.
Gomez-Ruiz, M., Li Donni, P., Marino, M. (2025), Dynamics of protest: Understanding violent and nonviolent protest in Africa. European Journal of Political Economy, 102745.
Book with Springer (work in progress.....)