Search this site
Embedded Files
Harsh Dhiman
  • Home
  • Research
    • Journal Publications
    • Book Chapters
  • Updates
  • Books Published
  • UG Courses
  • Testimonials
  • Contact
Harsh Dhiman
  • Home
  • Research
    • Journal Publications
    • Book Chapters
  • Updates
  • Books Published
  • UG Courses
  • Testimonials
  • Contact
  • More
    • Home
    • Research
      • Journal Publications
      • Book Chapters
    • Updates
    • Books Published
    • UG Courses
    • Testimonials
    • Contact
  1. A. Redekar, H. Dhiman, D. Deb, S.M. Muyeen, "On Reliability Enhancement of Solar PV Arrays using Hybrid SVR for Soiling Forecasting based on WT and EMD Decomposition ", Ain Shams Engineering Journal, Elsevier, 2024, (Accepted)

  2. H. Dhiman, D. Bhanushali, C. Su, T. Berghout, Y. Amirat, M. Benbouzid, "Enhancing Wind Turbine Reliability through Proactive High Speed Bearing Prognosis based on Adaptive Threshold and Gated Recurrent Unit Networks", 49th Annual Conference of IEEE Industrial Electronics Society (IECON) 2023, Accepted 

  3. S. Nallapaneni, K. Shah, and H. S. Dhiman, ‘Automated Solar PV Array Cleaning Based on Aerial Computer Vision Framework’, in Soft Computing: Theories and Applications, R. Kumar, A. K. Verma, T. K. Sharma, O. P. Verma, and S. Sharma, Eds. Singapore: Springer Nature Singapore, 2023, pp. 563–571.

  4. H. S. Dhiman, D. Deb, and J. M. Guerrero, ‘On wavelet transform based convolutional neural network and twin support vector regression for wind power ramp event prediction’, Sustainable Computing: Informatics and Systems, vol. 36, p. 100795, Dec. 2022.

  5. D. Neve, S. Joshi, H. S. Dhiman, and T. K. Nizami, ‘Global Horizontal Solar Irradiance Forecasting Based on Data-Driven and Feature Selection Techniques’, in Soft Computing: Theories and Applications, Springer Nature Singapore, 2022, pp. 825–834.

  6. H. S. Dhiman and S. Sen, ‘Data Envelopment Analysis Based Fuzzy TOPSIS and Fuzzy COPRAS Techniques for Selection of Solar Energy Projects’, in Infrastructure development -- theory, practice and policy, London: Routledge, 2022.

  7. T. K. Nizami, S. D. Gangula, R. Reddy, and H. S. Dhiman, ‘Legendre Neural Network based Intelligent Control of DC-DC Step Down Converter-PMDC Motor Combination’, IFAC-PapersOnLine, vol. 55, no. 1, pp. 162–167, 2022.

  8. M. Wadhwani, S. Deshmukh, and H. S. Dhiman, ‘Digital Twin Framework For Time To Failure Forecasting Of Wind Turbine Gearbox: A Concept’, May 2022.

  9. P. Mehta, S. Sahoo, and H. Dhiman, ‘Open Circuit Fault Diagnosis in Five-Level Cascaded H-Bridge Inverter’, International Transactions on Electrical Energy Systems, vol. 2022, pp. 1–13, Apr. 2022.

  10. J. Chaudhari, H. S. Dhiman, P. Suthar, and K. Manjunath, ‘Wavelet transform based comparative analysis of wind speed forecasting techniques’, in Studies in Infrastructure and Control, Singapore: Springer Singapore, 2022, pp. 121–128.

  11. S. V. Pandey, J. Patel, and H. S. Dhiman, ‘Battery state‐of‐charge modeling for solar PV array using polynomial regression’, in Artificial Intelligence for Renewable Energy Systems, Wiley, 2022, pp. 115–128.

  12. H. S. Dhiman, D. Deb, and S. M. Muyeen, ‘Lithium-ion battery prognostics based on support vector regression and time-series analysis’, in 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), 2021.

  13. J. Patel, L. Sharma, and H. S. Dhiman, ‘Wind Turbine Blade Surface Damage Detection based on Aerial Imagery and VGG16-RCNN Framework’, arXiv [eess.SY], 2021.

  14. A. K. Vyas, H. S. Dhiman, and K. K. Hiran, ‘Modelling of symmetrical quadrature optical ring resonator with four different topologies and performance analysis using machine learning approach’, Journal of Optical Communications, vol. 0, no. 0, Jan. 2021.

  15. H. S. Dhiman, D. Deb, S. M. Muyeen, and A. Abraham, ‘Machine intelligent forecasting based penalty cost minimization in hybrid wind-battery farms’, International Transactions on Electrical Energy Systems, Jul. 2021.

  16. H. S. Dhiman and A. S. Deshpande, ‘Fault Ride-Through study of PMSG based offshore wind farms during grid faults’, in 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016.

  17. H. S. Dhiman and A. S. Deshpande, ‘Fault ride-through capability of induction generator as offshore wind farm’, in 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016.

  18. H. S. Dhiman, D. Deb, J. Carroll, V. Muresan, and M.-L. Unguresan, ‘Wind Turbine Gearbox Condition Monitoring Based on Class of Support Vector Regression Models and Residual Analysis’, Sensors, vol. 20, no. 23, p. 6742, Nov. 2020.

  19. M. Sharma, H. S. Dhiman, and U. R. Acharya, ‘Automatic identification of insomnia using optimal antisymmetric biorthogonal wavelet filter bank with ECG signals’, Computers in Biology and Medicine, vol. 131, p. 104246, Apr. 2021.

  20. A. K. Vyas, H. Dhiman, and H. K. Hiran, ‘Modelling of symmetrical quadrature optical ring resonator with four different topologies and performance analysis using machine learning approach’, Journal of Optical Communications, vol. 0, no. 0, Jan. 2021.

  21. H. S. Dhiman, D. Deb, S. M. Muyeen, and I. Kamwa, ‘Wind Turbine Gearbox Anomaly Detection based on Adaptive Threshold and Twin Support Vector Machines’, IEEE Transactions on Energy Conversion, pp. 1–1, 2021.

  22. H. Dhiman, D. Deb, V. Muresan, and V. Balas, ‘Wake Management in Wind Farms: An Adaptive Control Approach’, Energies, vol. 12, no. 7, p. 1247, Apr. 2019.

  23. H. S. Dhiman, D. Deb, and A. M. Foley, ‘Bilateral Gaussian Wake Model Formulation for Wind Farms: A Forecasting based approach’, Renewable and Sustainable Energy Reviews, vol. 127, p. 109873, Jul. 2020.

  24. H. S. Dhiman, D. Deb, and V. E. Balas, Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction. Academic press, Elsevier, 2019.

  25. H. S. Dhiman and D. Deb, ‘Probability Distribution Functions for Short-Term Wind Power Forecasting’, in Soft Computing Applications, Springer International Publishing, 2020, pp. 60–69.

  26. H. S. Dhiman, Decision and Control in Hybrid Wind Farms. Springer, 2019.

  27. H. S. Dhiman and D. Deb, ‘Machine intelligent and deep learning techniques for large training data in short-term wind speed and ramp event forecasting’, International Transactions on Electrical Energy Systems, Feb. 2021.

  28. H. S. Dhiman and D. Deb, ‘Wake management based life enhancement of battery energy storage system for hybrid wind farms’, Renewable and Sustainable Energy Reviews, vol. 130, p. 109912, Sep. 2020.

  29. H. S. Dhiman, D. Deb, and A. M. Foley, ‘Lidar assisted wake redirection in wind farms: A data driven approach’, Renewable Energy, vol. 152, pp. 484–493, Jun. 2020.

  30. H. S. Dhiman and D. Deb, ‘Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wind farms’, Energy, vol. 202, p. 117755, Jul. 2020.

  31. H. S. Dhiman, P. Anand, and D. Deb, ‘Wavelet Transform and Variants of SVR with Application in Wind Forecasting’, in Advances in Intelligent Systems and Computing, Springer Singapore, 2018, pp. 501–511.


Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse