Journal Publications:
[15]. H. Lu, L. Sal ́o-Salgado, Y. Marzouk and R. Juanes, “Uncertainty Quantification of Fluid Leakage and Fault Instability in Geologic CO2 Storage”, accepted by Water Resources Research (2025), arXiv: link
[14]. H. Lu and D. Tartakovsky, “Data-driven models of nonautonomous systems”, Journal of Computational Physics (2024): 112976, doi: https://doi.org/10.1016/j.jcp.2024.112976
[13]. H. Lu and D. Tartakovsky, “DRIPS: A framework of Dimension Reduction and Interpolation in Parameter Space”, Journal of Computational Physics (2023): 112455, doi: https://doi.org/10.1016/j.jcp.2023.112455
[12]. H. Lu, G. Francesco and D. Tartakovsky, “Parsimonious models of in-host viraldynamics and immune response”, Applied Mathematics Letters 145 (2023): 108781, doi: https://doi.org/10.1016/j.aml.2023.108781
[11]. H. Lu, D. Ermakova, H. Wainwright, L. Zheng and D. Tartakovsky, “Data-driven Emulators for Multi-physics Phenomena in Porous Media”, Journal of Machine Learning for Modeling and Computing 2.2 (2021), doi: http://dx.doi.org/10.1615/JMachLearnModelComput.2021038577
[10]. H. Lu and D. Tartakovsky, “Extended Dynamic Mode Decomposition for Inhomogeneous Problems”, Journal of Computational Physics (2021): 110550, doi: https://doi.org/10.1016/j.jcp.2021. 110550
[9]. D. Ermakova, H. Wainwright, L. Zheng, I. Shirley and H. Lu, “Global (VI) integrating coupled THC into PA model”, Journal of Nuclear Engineering and Radiation Science 7.4 (2021): 041902, doi: https://doi.org/10.1115/1.4050297
[8]. H. Lu, Kimoon Um and D. Tartakovsky, “Hybrid Models of Chemotaxis with Application to Leukocyte Migration”, Journal of Mathematical Biology 82.4 (2021): 1-28, doi: http://dx.doi.org/10. 1007/s00285-021-01581-7
[7]. H. Lu and D. Tartakovsky, “Dynamic Mode Decomposition for Construction of Reduced-Order Models of Hyperbolic Problems with Shocks”, Journal of Machine Learning for Modeling and Computing 2.1 (2021), doi: http://dx.doi.org/10.1615/JMachLearnModelComput.2021036132
[6]. H. Lu, C. Weintz, J. Pace, D. Indana, K. Linka and E. Kuhl, “Are college campuses superspreaders? A data-driven modeling study.”, Computer Methods in Biomechanics and Biomedical Engineering (2020): 1-11, doi: https://doi.org/10.1080/10255842.2020.1869221
[5]. H. Lu and D. Tartakovsky, “Prediction Accuracy Analysis for Dynamic Mode Decomposition”, SIAM Journal on Scientific Computing 42.3 (2020): A1639-A1662, doi: https://doi.org/10.1137/ 19M1259948
[4]. H. Lu and D. Tartakovsky, “Lagrangian Dynamic Mode Decomposition for Construction of Reduced-Order Models of Advection-Dominated Phenomena”, Journal of Computational Physics 407 (2020): 109229, doi: https://doi.org/10.1016/j.jcp.2020.109229
[3]. S. Jin, H. Lu* and L. Pareschi, “A High Order Stochastic Asymptotic Preserving Scheme for Chemotaxis Kinetic Models with Random Inputs”, Multiscale Modeling & Simulation 16.4 (2018): 1884- 1915, doi: https://doi.org/10.1137/17M1150840
[2]. S. Jin, H. Lu* and L. Pareschi, “Efficient Stochastic Asymptotic-Preserving IMEX Methods for Transport Equations with Diffusive Scalings and Random Inputs”, SIAM Journal on Scientific Computing 40.2 (2018): A671-A696, doi: https://doi.org/10.1137/17M1120518
[1]. S. Jin and H. Lu*, “An Asymptotic-Preserving Stochastic Galerkin Method for the Radiative Heat Transfer Equations with Random Inputs and Diffusive Scalings”, Journal of Computational Physics 334 (2017): 182-206, doi: https://doi.org/10.1016/j.jcp.2016.12.033
Preprints:
[P2]. M. D’Elia, ..., H. Lu, et al. “Machine Learning in Heterogeneous Porous Materials”, (2022), arXiv: https://arxiv.org/abs/2202.04137
[P1]. L. Jin, H. Lu* and G. Wen, “Fast uncertainty quantification of reservoir simulation with variational U-Net”, (2019), arXiv: https://arxiv.org/abs/1907.00718
*alphabetical authorship, student under my mentorship
Ph.D. Thesis:
“Reduced-Order Models of Transport Phenomena”, Stanford University (2022).