Research

Quantum measurements and thermodynamics

Measurement is of central importance in the foundations of quantum mechanics, and its use is ubiquitous in the emerging quantum technologies. In the most general terms, a quantum system is measured when it undergoes an interaction with a macroscopic measuring apparatus, so that the transitions of some variable of the apparatus, such as the position of a pointer along a scale, registers the value of some observable of the system.  

Given that measurements are physical processes, it stands to reason that they are subject to the fundamental laws of nature. The aim of this ongoing research project is to characterise the thermodynamic quantities associated with the measurement process on the one hand, and to determine how the laws of thermodynamics impose fundamental constraints on measurements, on the other. 

Universal validity of the second law of information thermodynamics, S. Minagawa, M. H. M., K. Sakai, K. Kato, F. Buscemi, arXiv 

Measurement disturbance and conservation laws in quantum mechanics, M. H. M., T. Miyadera, L. Loveridge, Quantum 7, 1033 (2023)

Quantum measurements constrained by the third law of thermodynamics, M. H. M. and T. Miyadera, Phys. Rev. A 107, 022406 (2023)  arXiv 

Thermodynamically free quantum measurements, M. H. M.,  J. Phys. A: Math. Theor. 55 505304 (2022)  arXiv

Classicality of the heat produced by quantum measurements, M. H. M., Phys. Rev. A 104, 062202 (2021) arXiv 

Self-consistency of the two-point energy measurement protocol, M. H. M., Phys. Rev. A 103, 042214 (2021) arXiv

Conditional work statistics of quantum measurements, M. H. M. and A. Romito, Quantum 3, 175 (2019) 

A quantum Szilard engine without heat from a thermal reservoir, M. H. M. and J. Anders, New Journal of Physics, 19, 113026 (2017)

Quantum thermodynamics

Quantum thermodynamics is a research field with the broad aims of understanding how the laws of thermodynamics manifest in the quantum regime on the one hand, and how quantum phenomena affect the performance of thermodynamic protocols—such as work extraction and refrigeration—on the other. The following are my contributions to this topic.

Joint statistics of work and entropy production along quantum trajectories, H. J. D. Miller, M. H. M., M. Perarnau-Llobet, G. Guarnieri, Phys. Rev. E 103, 052138 (2021) arXiv 

Thermodynamic uncertainty relation in slowly driven quantum heat engines, H. J. D. Miller, M. H. M., M. Perarnau-Llobet, G. Guarnieri, Phys. Rev. Lett. 126, 210603 (2021) arXiv

Energetic footprints of irreversibility in the quantum regime, M. H. M., A. Auffèves, J. Anders, Communications Physics 3, 89 (2020)

Efficiency of a cyclic quantum heat engine with finite-size baths, M. H. M. and A. Romito, Phys. Rev. E 100, 012122 (2019) arXiv

Work, Heat and Entropy Production Along Quantum Trajectories, C. Elouard and M. H. M., Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, pp. 363-393, (2018) arXiv

Low-control and robust quantum refrigerator and applications with electronic spins in diamond, M. H. M., H. Choi, M. E. Trusheim, A. Bayat, D. Englund, Y. Omar, Phys. Rev. A 97, 042124 (2018) arXiv

Minimising the heat dissipation of quantum information erasure, M. H. M., M. Mohseni, Y. Omar, New Journal of Physics, 18, 015011 (2016)

Nuclear-electronic spin systems

Nuclear-electronic spin systems, as instantiated by Phosphorus or Bismuth doped Silicon, are a promising platform for quantum information processing.  In this research project we investigated the properties of such systems, identifying regimes where they may serve as a robust medium for the storage and manipulation of quantum information. 

Quantum control of hybrid nuclear-electronic qubits, G. W. Morley, P. Lueders, M. H. M., S. J. Balian, G. Aeppli, C. W. M. Kay, W. M. Witzel, G. Jeschke, T. S. Monteiro, Nature Materials 12, 103–107 (2013) arXiv

Measuring central-spin interaction with a spin bath by pulsed ENDOR: Towards suppression of spin diffusion decoherence, S. J. Balian, M. B. A. Kunze, M. H. M., G. W. Morley, W. M. Witzel, C. W. M. Kay, T. S. Monteiro, Phys. Rev. B 86, 104428 (2012) arXiv

Analysis of quantum coherence in bismuth-doped silicon: a system of strongly coupled spin qubits, M. H. M., G. W. Morley, A. Nazir, T. S. Monteiro, Phys. Rev. B 85, 094404 (2012) arXiv

Bismuth Qubits in Silicon: The Role of EPR Cancellation Resonances, M. H. M., G. W. Morley, T. S. Monteiro, Phys. Rev. Lett. 105, 067602 (2010) arXiv