Anomaly Detection

Anomaly detection, a.k.a. outlier detection or novelty detection, has been a lasting yet active research area in various research communities for several decades. There are still some unique problem complexities and challenges that require advanced approaches. In this project, we exploit a deep neural networks to find anomalies in data.


Paper link 

PAE: Product Attribute Extraction for E-Commerce Fashion Trends

Product attribute extraction is an growing field in e-commerce business, with several applications including product ranking, product recommendation, future assortment planning and improving online shopping customer experiences. Understanding the customer needs is critical part of online business, specifically fashion products. Retailers uses assortment planning to determine the mix of products to offer in each store and channel, stay responsive to market dynamics and to manage inventory and catalogs. The goal is to offer the right styles, in the right sizes and colors, through the right channels. When shoppers find products that meet their needs and desires, they are more likely to return for future purchases, fostering customer loyalty. Product attributes are a key factor in assortment planning. In this paper we present PAE, a product attribute extraction algorithm for future trend reports consisting text and images in PDF format. Most existing methods focus on attribute extraction from titles or product descriptions or utilize visual information from existing product images. Compared to the prior works, our work focuses on attribute extraction from PDF files where upcoming fashion trends are explained. This work proposes a more comprehensive framework that fully utilizes the different modalities for attribute extraction and help retailers to plan the assortment in advance. Our contributions are three-fold: (a) We develop PAE, an efficient framework to extract attributes from unstructured data (text and images); (b) We provide catalog matching methodology based on BERT representations to discover the existing attributes using upcoming attribute values; (c) We conduct extensive experiments with several baselines and show that PAE is an effective, flexible and on par or superior (avg 92.5% F1-Score) framework to existing state-of-the-art for attribute value extraction task.

Paper link: PAE paper 

Capsule Network Compression

The broad goal of this research project will be to address the grand challenge: to develop robust techniques that enable us to compress a relatively new deep learning paradigm namely Capsule network by using tensor mining methods and design effective tool with explicit performance guarantees.


Project highlights: TBD