Denoising of InSAR time series through spatiotemporal deep learning, in preparation
Costantino, G. & Jolivet, R.
Towards slow slip near-real-time monitoring in Aotearoa, New Zealand, using geometric deep learning, in preparation
Aden-Antoniów, F., Li, L., Burton, C., Spesivtsev, A., Costantino, G., Behr, Y., Buxton, R. & Williams, C.
A continuum of slow slip events in the Cascadia subduction zone illuminated by high-resolution deep-learning denoising, in review
Costantino, G., Radiguet, M., El Yousfi, Z. & Socquet, A.
Geophysical Research Letters
Denoising of geodetic time series using spatiotemporal Graph Neural Networks: application to slow slip event extraction
Costantino, G., Giffard‐Roisin, S., Dalla Mura, M. & Socquet, A.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024
Multi-station deep learning on geodetic time series detects slow slip events in Cascadia
Costantino, G., Giffard‐Roisin, S., Radiguet, M., Dalla Mura, M., Marsan, D. & Socquet, A.
Nature Communications Earth & Environment, 2023
Seismic source characterization from GNSS data using deep learning
Costantino, G., Giffard‐Roisin, S., Marsan, D., Marill, L., Radiguet, M., Dalla Mura, M., Janex G. & Socquet, A.
Journal of Geophysical Research: Solid Earth, 2023
Characterization of Slow Slip Events from GNSS Data with Deep Learning
Costantino, G., Giffard‐Roisin, S., Dalla Mura, M. & Socquet, A.
IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2023
2025
Signal extraction from noisy geospatial data: detecting transient deformations through spatiotemporal deep learning
Costantino, G., Giffard-Roisin, S., Dalla Mura, M., Radiguet, M., Socquet, A. & Jolivet, R.
NUTS-AI : workshop on artificial intelligence and application to solid Earth, Paris (FR) [invited speaker]
Denoising of InSAR time series through spatiotemporal deep learning
Costantino, G. & Jolivet, R.
European Geoscience Union (EGU) General Assembly, Vienna (AUT) [poster]
2024
Continuous monitoring of slow slip in Cascadia: implications for scaling laws and source time function
Costantino, G., Radiguet, M. & Socquet, A.
American Geophysical Union (AGU) Fall Meeting, Washington, D.C. [poster]
Automatic detection of millimeter-scale slow slip events on the North Anatolian Fault through deep learning and MSSA
Costantino, G., Jara J., Özdemir, A., Dogan, U., Çakir, Z., Ergintav, S. & Jolivet, R.
American Geophysical Union (AGU) Fall Meeting, Washington, D.C. [poster]
Denoising of Geodetic Time Series Using Spatiotemporal Graph Neural Networks: Application to Slow Slip Event Extraction
Costantino, G., Giffard‐Roisin, S., Dalla Mura, M. & Socquet, A.
American Geophysical Union (AGU) Fall Meeting, Washington, D.C. [invited speaker]
Continuous monitoring of slow slip in Cascadia through deep-learning-based denoising of GNSS data
Costantino, G., Giffard‐Roisin, S., Radiguet, M., Dalla Mura, M. & Socquet, A.
Symposium MDIS (Mesure de la Déformation par Imagerie Satellitaire) - FormaTerre 2024, Orléans (FR) [presentation]
Fifteen years of moment release along the Cascadia subduction zone inferred from deep learning applied to raw GNSS time series
Costantino, G., Radiguet, M. & Socquet, A.
Integrated Plate Boundary Observatory Chile (IPOC) workshop on Active Subduction Processes along the Andean Margin, Potsdam (DE) [poster]
2023
Automated extraction of slow slip events in Cascadia by spatiotemporal deep learning on raw GNSS data brings new constraints on scaling laws
Costantino, G., Giffard‐Roisin, S., Radiguet, M., Dalla Mura, M. & Socquet, A.
American Geophysical Union (AGU) Fall Meeting, San Francisco (CA) [presentation]
Denoising of non-post-processed strainmeter data through spatiotemporal deep learning: towards slow slip event identification
Costantino, G., Mandler E.
American Geophysical Union (AGU) Fall Meeting, San Francisco (CA) [poster]
Détection and charactérisation des glissements lents dans les zones de subduction par intelligence artificielle appliquée aux données GNSS
Costantino, G., Giffard‐Roisin, S., Radiguet, M., Dalla Mura, M. & Socquet, A.
Rencontres EPOS-France, Saint-Jean-Cap-Ferrat, (FR) [invited presentation, given in French]
Detection and characterization of slow slip events in GNSS data with deep learning
Costantino, G., Giffard‐Roisin, S., Radiguet, M., Dalla Mura, M. & Socquet, A.
Cargèse school of subduction processes, Cargèse, (FR) [presentation]
Detection and characterization of slow slip events in GNSS data with deep learning
Costantino, G., Giffard‐Roisin, S., Radiguet, M., Dalla Mura, M. & Socquet, A.
IRP slowfaults workshop, Châtenay-sur-Seine, (FR) [presentation]
Automatic extraction of slow slip events in non-post-processed GNSS time series by spatiotemporal deep learning
Costantino, G., Giffard‐Roisin, S., Radiguet, M., Dalla Mura, M. & Socquet, A.
ERC TECTONIC workshop on earthquake physics and applications of machine learning to tectonic faulting, Rome, (IT) [presentation]
Detection and characterization of slow slip events in GNSS time series with deep learning
Costantino, G., Giffard‐Roisin, S., Dalla Mura, M., Marsan D., Radiguet, M. & Socquet, A.
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Pasadena, (CA) [presentation]
Detection and characterization of slow deformation from GNSS data by deep learning in the Cascadia subduction zone
Costantino, G., Giffard‐Roisin, S., Dalla Mura, M., Marsan D., Radiguet, M. & Socquet, A.
European Geoscience Union (EGU) General Assembly, Vienna (AUT) [presentation]
2022
Detection of small slow slip events from GNSS data using deep learning in the Cascadia subduction zone
Costantino, G., Giffard‐Roisin, S., Dalla Mura, M., Marsan D., Radiguet, M. & Socquet, A.
American Geophysical Union (AGU) Fall Meeting, Chicago (IL) [presentation]
Slow slip events in the Cascadia subduction zone detected by deep learning from noisy GNSS time series
Costantino, G., Giffard‐Roisin, S., Dalla Mura, M., Marsan D., Radiguet, M. & Socquet, A.
Géodésie, Géophysique et Montagne (G2) conference, Grenoble (FR) [presentation]
Slow slip event detection from GNSS data using deep learning in the Cascadia subduction zone
Costantino, G., Giffard‐Roisin, S., Dalla Mura, M., Marsan D., Radiguet, M. & Socquet, A.
Statistical Seismology International Conference (STATSEI) [poster]
Slow slip event detection from GNSS data using deep learning in the Cascadia subduction zone
Costantino, G., Giffard‐Roisin, S., Dalla Mura, M., Marsan D., Radiguet, M. & Socquet, A.
International Joint Workshop on Slow-to-Fast Earthquakes, Nara (JAPAN) [presentation]
Towards the characterization of slow slip deformation by means of deep learning
Costantino, G., Giffard‐Roisin, S., Dalla Mura, M., Marsan D., Radiguet, M. & Socquet, A.
European Geoscience Union (EGU) General Assembly, Vienna (AUT) [presentation] [top 20%]
2021
Machine Learning applied to the characterization of the seismic source
Costantino, G., Giffard‐Roisin, S., Dalla Mura, M., Marsan D., Radiguet, M. & Socquet, A.
American Geophysical Union (AGU) Fall Meeting, New Orleans (LA) [poster]
Machine Learning applied to the detection of slow slip events
Costantino, G., Giffard‐Roisin, S., Dalla Mura, M., Marsan D., Radiguet, M. & Socquet, A.
Cargèse school on earthquakes: nucleation, triggering and relationships with aseismic processes, (Cargèse, Corsica) [poster]
2020
Towards assessing the link between slow slip and seismicity with a deep learning approach
Costantino, G., Dalla Mura, M., Marsan D., Giffard‐Roisin, S., Radiguet, M. & Socquet, A.
European Geoscience Union (EGU) General Assembly [presentation]