Publications

INTERNATIONAL PEER-REVIEWED JOURNAL

#Corresponding author: 7

First author (*Co-first author): 29

Co-author: 19

  1. Shimakawa G, Krieger-Liszkay A, Roach T (2022) ROS-derived lipid peroxidation is prevented in barley leaves during senescence. Physiologia Plantarum In press. https://doi.org/10.1111/ppl.13769.

  2. Kusama S, Miyake C, Nakanishi S, Shimakawa G# (2022) Dissection of respiratory and cyclic electron transport in Synechocystis sp. PCC 6803. Journal of Plant Research 135, 555−564. https://doi.org/10.1007/s10265-022-01401-z.

  3. Krieger-Liszkay A, Shimakawa G (2022) Regulation of the generation of reactive oxygen species during photosynthetic electron transport. Biochemical Society Transactions [Review] 50, 1025−1034. https://doi.org/10.1042/BST20211246.

  4. Kusama S, Kojima S, Kimura K, Shimakawa G, Miyake C, Tanaka K, Okumura Y, Nakanishi S (2022) Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation. Nature Communications 13, 3067. https://doi.org/10.1038/s41467-022-30764-z.

  5. Hatano J, Kusama S, Tanaka K, Kohara A, Miyake C, Nakanishi S#, Shimakawa G# (2022) NADPH production in dark stages is critical for cyanobacterial photocurrent generation: a study using mutants deficient in oxidative pentose phosphate pathway. Photosynthesis Research In press. https://doi.org/10.1007/s11120-022-00903-0.

  6. Shimakawa G, Shoguchi E, Burlacot A, Ifuku K, Che Y, Kumazawa M, Tanaka K, Nakanishi S (2022) Coral symbionts evolved a functional polycistronic flavodiiron gene. Photosynthesis Research 151, 113−124. https://doi.org/10.1007/s11120-021-00867-7.

  7. Shimakawa G, Hanawa H, Wada S, Hanke GT, Matsuda Y, Miyake C (2021) Physiological roles of flavodiiron proteins and photorespiration in the liverwort Marchantia polymorpha. Frontiers in Plant Science 12, 1806. http://doi.org/10.3389/fpls.2021.668805.

  8. Messant M, Krieger-Liszkay A, Shimakawa G (2021) Dynamic changes in protein-membrane association for regulating photosynthetic electron transport. Cells [Review] 10, 1216. https://doi.org/10.3390/cells10051216.

  9. Shimakawa G, Miyake C (2021) Photosynthetic linear electron flow drives CO2 assimilation in maize leaves. International Journal of Molecular Sciences 22, 4894. https://doi.org/10.3390/ijms22094894.

  10. Tanaka K, Shimakawa G, Tabata H, Kusama S, Miyake C, Nakanishi S (2021) Quantification of NAD(P)H in cyanobacterial cells by a phenol extraction method. Photosynthesis Research 148, 57−66. https://doi.org/10.1007/s11120-021-00835-1.

  11. Tanaka K, Shimakawa G, Kusama S, Harada T, Kato S, Nakanishi S (2021) Ferrihydrite reduction by photosynthetic Synechocystis sp. PCC 6803 and its correlation with electricity generation. Frontiers in Microbiology 12, 469. https://doi.org/10.3389/fmicb.2021.650832.

  12. Shimakawa G#*, Kohara A*, Miyake C (2021) Characterization of light-enhanced respiration in cyanobacteria. International Journal of Molecular Sciences 22, 342. https://doi.org/10.3390/ijms22010342.

  13. Messant M*, Shimakawa G*, Perreau F, Miyake C, Krieger-Liszkay A (2021) Evolutive differentiation between alga- and plant-type plastid terminal oxidase: study of plastid terminal oxidase PTOX isoforms in Marchantia polymorpha. Biochimica et Biophysica Acta - Bioenergetics 1862, 148309. https://doi.org/10.1016/j.bbabio.2020.148309.

  14. Shimakawa G, Roach T, Krieger-Liszkay A (2020) Changes in photosynthetic electron transport during leaf senescence in two barley varieties grown in contrasting growth regimes. Plant and Cell Physiology 61, 1986−1994. https://doi.org/10.1093/pcp/pcaa114.

  15. Furutani R, Makino A, Suzuki Y, Wada S, Shimakawa G, Miyake C (2020) Intrinsic fluctuations in transpiration induce photorespiration to oxidize P700 in photosystem I. Plants 9, 1761. https://doi.org/10.3390/plants9121761.

  16. Tanaka K, Shimakawa G, Nakanishi S (2020) Time-of-day-dependent responses of cyanobacterial cellular viability against oxidative stress. Scientific Reports 10, 20029. https://doi.org/10.1038/s41598-020-77141-8.

  17. Furutani R, Ifuku K, Suzuki Y, Noguchi K, Shimakawa G, Wada S, Makino A, Sohtome T, Miyake C (2020) P700 oxidation suppresses the production of reactive oxygen species in photosystem I. Advances in Botanical Research [Book] 96, 151−176. https://doi.org/10.1016/bs.abr.2020.08.001.

  18. Margulis K, Zer H, Lis H, Schoffman H, Murik O, Shimakawa G, Krieger-Liszkay A, Keren N (2020) Over expression of the cyanobacterial Pgr5-homologue leads to pseudoreversion in a gene involved in Synechocystis 6803 redox regulation. Life 10, 174. https://doi.org/10.3390/life10090174.

  19. Krieger-Liszkay A, Shimakawa G, Sétif P (2020) Role of the two PsaE isoforms on O2 reduction at photosystem I in Arabidopsis thaliana. Biochimica et Biophysica Acta - Bioenergetics 1861, 148089. https://doi.org/10.1016/j.bbabio.2019.148089.

  20. Sétif P, Shimakawa G, Krieger-Liszkay A, Miyake C (2020) Identification of the electron donor to flavodiiron proteins in Synechocystis sp. PCC 6803 by in vivo spectroscopy. Biochimica et Biophysica Acta - Bioenergetics 1861, 148256. https://doi.org/10.1016/j.bbabio.2020.148256.

  21. Ueno Y, Shimakawa G, Aikawa S, Miyake C, Akimoto S (2020) Photoprotection mechanisms under different CO2 regimes during photosynthesis in a green alga Chlorella variabilis. Photosynthesis Research 144, 397−407. https://doi.org/10.1007/s11120-020-00757-4.

  22. Shimakawa G#, Sétif P, Krieger-Liszkay A (2020) Near‑infrared in vivo measurements of photosystem I and its lumenal electron donors with a recently developed spectrophotometer. Photosynthesis Research 144, 63−72. https://doi.org/10.1007/s11120-020-00733-y.

  23. Shimakawa G, Miyake C (2019) What quantity of photosystem I is optimum for safe photosynthesis? Plant Physiology 179, 1479−1485. https://doi.org/10.1104/pp.18.01493.

  24. Krieger-Liszkay A*, Krupinska K*, Shimakawa G* (2019) The impact of photosynthesis on initiation of leaf senescence. Physiologia Plantarum [Review] 166, 148−164. https://doi.org/10.1111/ppl.12921.

  25. Shimakawa G, Murakami A, Niwa K, Matsuda Y, Wada A, Miyake C (2019) Comparative analysis of strategies to prepare electron sinks in aquatic photoautotrophs. Photosynthesis Research 139, 401−411. https://doi.org/10.1007/s11120-018-0522-z.

  26. Shimakawa G, Miyake C (2018) Oxidation of P700 ensures robust photosynthesis. Frontiers in Plant Science [Review] 9, 1617. https://doi.org/10.3389/fpls.2018.01617.

  27. Shimakawa G#, Ifuku K, Suzuki Y, Makino A, Ishizaki K, Fukayama H, Morita R, Sakamoto K, Nishi A, Miyake C (2018) Responses of the chloroplast glyoxalase system to high CO2 concentrations. Bioscience, Biotechnology, and Biochemistry 82, 2072−2083. https://doi.org/10.1080/09168451.2018.1507724.

  28. Shimakawa G, Miyake C (2018) Changing frequency of fluctuating light reveals the molecular mechanism for P700 oxidation in plant leaves. Plant Direct 2, e00073. https://doi.org/10.1002/pld3.73.

  29. Shimakawa G*, Shaku K*, Miyake C (2018) Reduction-induced suppression of electron flow (RISE) is relieved by non-ATP-consuming electron flow in Synechococcus elongatus PCC 7942. Frontiers in Microbiology 9, 886. https://doi.org/10.3389/fmicb.2018.00886.

  30. Shimakawa G, Miyake C (2018) Respiratory terminal oxidases alleviate photo-oxidative damage in photosystem I during repetitive short-pulse illumination in Synechocystis sp. PCC 6803. Photosynthesis Research 137, 241−250. https://doi.org/10.1007/s11120-018-0495-y.

  31. Ueno Y, Shimakawa G, Miyake C, Akimoto S (2018) Light-harvesting strategy during CO2‑dependent photosynthesis in the green alga Chlamydomonas reinhardtii. Journal of Physical Chemistry Letters 9, 1028−1033. https://doi.org/10.1021/acs.jpclett.7b03404.

  32. Shimakawa G*, Kohara A*, Miyake C (2018) Medium-chain dehydrogenase/reductase and aldo-keto reductase scavenge reactive carbonyls in Synechocystis sp. PCC 6803. FEBS Letters 592, 1010−1019. https://doi.org/10.1002/1873-3468.13003.

  33. Shimakawa G, Watanabe S, Miyake C (2017) A carbon dioxide limitation-inducible protein, ColA, supports the growth of Synechococcus sp. PCC 7002. Marine Drugs 15, 390. https://doi.org/10.3390/md15120390.

  34. Hanawa H, Ishizaki K, Nohira K, Takagi D, Shimakawa G, Sejima T, Shaku K, Makino A, Miyake C (2017) Land plants drive photorespiration as higher electron-sink: Comparative study of post-illumination transient O2-uptake rates from liverworts to angiosperms through ferns and gymnosperms. Physiologia Plantarum 161, 138−149. https://doi.org/10.1111/ppl.12580.

  35. Takagi D, Ishizaki K, Hanawa H, Mabuchi T, Shimakawa G, Yamamoto H, Miyake C (2017) Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants. Physiologia Plantarum 161, 56−74. https://doi.org/10.1111/ppl.12562.

  36. Shimakawa G*, Ishizaki K*, Tsukamoto S, Tanaka M, Sejima T, Miyake C (2017) The liverwort, Marchantia, drives alternative electron flow using a flavodiiron protein to protect PSI. Plant Physiology 173, 1636−1647. https://doi.org/10.1104/pp.16.01038.

  37. Shimakawa G, Matsuda Y, Nakajima K, Tamoi M, Shigeoka S, Miyake C (2017) Diverse strategies of O2 usage for preventing photo-oxidative damage under CO2 limitation during algal photosynthesis. Scientific Reports 7, 41022. https://doi.org/10.1038/srep41022.

  38. Shimakawa G, Shaku K, Miyake C (2016) Oxidation of P700 in photosystem I is essential for the growth of cyanobacteria. Plant Physiology 172, 1443−1450. https://doi.org/10.1104/pp.16.01227.

  39. Shimakawa G#, Akimoto S, Ueno Y, Wada A, Shaku K, Takahashi Y, Miyake C (2016) Diversity in photosynthetic electron transport under [CO2]-limitation: the cyanobacterium Synechococcus sp. PCC 7002 and green alga Chlamydomonas reinhardtii drive an O2-dependent alternative electron flow and non-photochemical quenching of chlorophyll fluorescence during CO2-limited photosynthesis. Photosynthesis Research 130, 293−305. https://doi.org/10.1007/s11120-016-0253-y.

  40. Shaku K, Shimakawa G, Hashiguchi M, Miyake C (2016) Reduction-induced suppression of electron flow (RISE) in the photosynthetic electron transport system of Synechococcus elongatus PCC 7942. Plant and Cell Physiology 57, 1443−1453. https://doi.org/10.1093/pcp/pcv198.

  41. Sejima T*, Hanawa H*, Shimakawa G*, Takagi D, Suzuki Y, Fukayama H, Makino A, Miyake C (2016) Post-illumination transient O2-uptake is driven by photorespiration in tobacco leaves. Physiologia Plantarum 156, 227−238. https://doi.org/10.1111/ppl.12388.

  42. Shimakawa G, Shaku K, Nishi A, Hayashi R, Yamamoto H, Sakamoto K, Makino A, Miyake C (2015) FLAVODIIRON2 and FLAVODIIRON4 proteins mediate an oxygen-dependent alternative electron flow in Synechocystis sp. PCC 6803 under CO2-limited conditions. Plant Physiology 167, 472−480. https://doi.org/10.1104/pp.114.249987.

  43. Hasunuma T, Matsuda M, Senga Y, Aikawa S, Toyoshima M, Shimakawa G, Miyake C, Kondo A (2014) Overexpression of flv3 improves photosynthesis in the cyanobacterium Synechocystis sp. PCC6803 by enhancement of alternative electron flow. Biotechnology for Biofuels 7: 493. https://doi.org/10.1186/s13068-014-0183-x.

  44. Shimakawa G, Suzuki M, Yamamoto E, Saito R, Iwamoto T, Nishi A, Miyake C (2014) Why don't plants have diabetes? Systems for scavenging reactive carbonyls in photosynthetic organisms. Biochemical Society Transactions [Review] 42, 543−547. https://doi.org/10.1042/bst20130273.

  45. Takagi D*, Inoue H*, Odawara M*, Shimakawa G, Miyake C (2014) The Calvin cycle inevitably produces sugar-derived reactive carbonyl methylglyoxal during photosynthesis: A potential cause of plant diabetes. Plant and Cell Physiology 55, 333−340. https://doi.org/10.1093/pcp/pcu007.

  46. Shimakawa G, Hasunuma T, Kondo A, Matsuda M, Makino A, Miyake C (2014) Respiration accumulates Calvin cycle intermediates for the rapid start of photosynthesis in Synechocystis sp. PCC 6803. Bioscience, Biotechnology, and Biochemistry 78, 1997−2007. https://doi.org/10.1080/09168451.2014.943648.

  47. Hayashi R*, Shimakawa G*, Shaku K, Shimizu S, Akimoto S, Yamamoto H, Amako K, Sugimoto T, Tamoi M, Makino A, Miyake C (2014) O2-dependent large electron flow functioned as an electron sink, replacing the steady-state electron flux in photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803, but not in the cyanobacterium Synechococcus sp. PCC 7942. Bioscience, Biotechnology, and Biochemistry 78, 384−393. https://doi.org/10.1080/09168451.2014.882745.

  48. Shimakawa G*, Suzuki M*, Yamamoto E, Nishi A, Saito R, Sakamoto K, Yamamoto H, Makino A, Miyake C (2013) Scavenging systems for reactive carbonyls in the cyanobacterium Synechocystis sp. PCC 6803. Bioscience, Biotechnology, and Biochemistry 77, 2441−2448. https://doi.org/10.1271/bbb.130554.

  49. Saito R, Shimakawa G, Nishi A, Iwamoto T, Sakamoto K, Yamamoto H, Amako K, Makino A, Miyake C (2013) Functional analysis of the AKR4C subfamily of Arabidopsis thaliana: Model structures, substrate specificity, acrolein toxicity, and responses to light and [CO2]. Bioscience, Biotechnology, and Biochemistry 77, 2038−2045. https://doi.org/10.1271/bbb.130353.

  50. Shimakawa G, Iwamoto T, Mabuchi T, Saito R, Yamamoto H, Amako K, Sugimoto T, Makino A, Miyake C (2013) Acrolein, an α,β-unsaturated carbonyl, inhibits both growth and PSII activity in the cyanobacterium Synechocystis sp. PCC 6803. Bioscience, Biotechnology, and Biochemistry 77, 1655−1660. https://doi.org/10.1271/bbb.130186.

OTHERS

  1. 嶋川 銀河 (2020) 若手研究者の海外留学レポート第10回「Krieger-Liszkay 研究室@CEA-Saclay (フランス)」. 光合成研究 30, 126−129.

  2. 嶋川 銀河 (2018) First European Congress on Photosynthesis Research, ePS-1. 光合成研究 28, 126−127.

  3. 嶋川 銀河 (2018) History of the fight of oxygenic phototrophs against reactive oxygen species ~Establishing the novel concept “P700 oxidation system”~. 博士学位論文 神戸大学農学研究科.

  4. 嶋川 銀河, 三宅 親弘 (2017) 植物が安心して光合成できるワケ~PSIを光傷害から護るP700酸化システム~. 光合成研究 27, 4−15.

  5. 嶋川 銀河 (2015) International Conference “Photosynthesis Research for Sustainability-2015”に参加して. 光合成研究 25, 221.

  6. 鹿内利治ほか (2015) 光合成辞典 Web版 日本光合成学会.

  7. 嶋川 銀河 (2015) 光合成生物における環境ストレスへの応答. 修士学位論文 神戸大学農学研究科.

  8. 嶋川 銀河 (2015) シアノバクテリアの光合成における酸素利用. 光合成研究 25, 16−21.

  9. Shimakawa G, Chikahiro Miyake (2014) The mechanisms of production and detoxification of dicarbonyls in photosynthetic organisms. IMARS Highlights 9, 5−13.