Previous serie: theinfinityseeker's colossol series
Gongulus
{10,10(100)2}
Second Gongulus / Gonguxxus
{10,100(100)2}
Gongulusplex
{10,{10,10(100)2}(0,1)2}
Gongulgiggol
{10,100,2(0,1)2}
Gongulgaggol
{10,100,3(0,1)2}
Gongulgeegol
{10,100,4(0,1)2}
Gongulgigol
{10,100,5(0,1)2}
Gongulgoggol
{10,100,6(0,1)2}
Gongulgagol
{10,100,7(0,1)2}
Gongulboogol
{10,10,100(0,1)2}
Gongultroogol
{10,10,10,100(0,1)2}
Gongulquadroogol
{10,10,10,10,100(0,1)2}
Gongulgoobol
{10,100(1)2(0,1)2}
Gongulgootrol
{10,100(1)3(0,1)2}
Gongulgossol
{10,10(1)100(0,1)2}
Gongulmossol
{10,10(1)10,100(0,1)2}
Gonguldubol
{10,100(1)(1)2(0,1)2}
Gongultriubol
{10,100(1)(1)(1)2(0,1)2}
Gongultetrubol
{10,100(1)(1)(1)(1)2(0,1)2}
Gongulgoxxol
{10,100(2)2(0,1)2}
Gongulcoloxxol
{10,100(3)2(0,1)2}
Gongulteroxxol
{10,100(4)2(0,1)2}
Grand gongulus
{10,100(0,1)3}
Gongulus-mul-root
{10,10(0,1)100}
Gongulus-mul-giggol
{10,10(0,1)100,2}
Gongulus-mul-gaggol
{10,10(0,1)100,3}
Gongulus-mul-geegol
{10,10(0,1)100,4}
Gongulus-mul-gigol
{10,10(0,1)100,5}
Gongulus-mul-boogol
{10,10(0,1)10,100}
Gongulus-mul-troogol
{10,10(0,1)10,10,100}
Gongulus-mul-quadroogol
{10,10(0,1)10,10,10,100}
Gongulus-mul-goobol
{10,100(0,1)(1)2}
Gongulus-mul-goxxol
{10,100(0,1)(2)2}
Gongulus-mul-coloxxol
{10,100(0,1)(3)2}
Gongulus-mul-teroxxol
{10,100(0,1)(4)2}
Gongulus-mul-gongulus / Dueli-gongulus
{10,100(0,1)(0,1)2}
Trioli-gongulus / Gongulus-pow-three
{10,100(0,1)(0,1)(0,1)2}
Quardidli-gongulus / Gongulus-pow-four
{10,100(0,1)(0,1)(0,1)(0,1)2}
Gongulusfact / Gongulusblast / Gongulus-pow-root
{10,100(1,1)2}
Dueli-Gongulusblast / Gongulus-pow-boogol
{10,100(1,1)(1,1)2}
Gonzapgulus / Gongulus-pow-goobol
{10,100(2,1)2}
Dulatri
{3,3(0,2)2} = {3,3(3,1)2}
Goncolossgulus / Gongulus-pow-goxxol
{10,100(3,1)2}
Dulatet (XRQ)
{4,4(0,2)2}
Gonterossgulus / Gongulus-pow-coloxxol
{10,100(4,1)2}
Dulapent (XRQ)
{5,5(0,2)2}
Gonpetossgulus / Gongulus-pow-teroxxol
{10,100(5,1)2}
Duladecal
{10,10(0,2)2} = {10,10(10,1)2}
Gingulus
{10,100(0,2)2} = {10,10(100,1)2}
This is a 100^(100*2)=(100^100)^100 array of tens.
In total this would have 10^400 tens in it (not a linear array with 10^400 tens mind you!)
Gingulusblast / Gingulusfact / Gingulus-pow-root
{10,100(1,2)2}
Ginzapgulus / Gingulus-pow-goobol
{10,100(2,2)2}
Dueli-ginzapgulus / Gingulus-pow-dubol
{10,100(2,2)(2,2)2}
Trilatri
{3,3(0,0,1)2} = {3,3(0,3)2} = {3,3(3,2)2}
Trioli-ginzapgulus / Gingulus-pow-triubol
{10,100(2,2)(2,2)(2,2)2}
Gincolossgulus / Gingulus-pow-goxxol
{10,100(3,2)2}
Triladecal
{10,10(0,3)2} = {10,10(10,2)2}
Gangulus
{10,100(0,3)2}
Gangulusblast / Gangulusfact / Gangulus-pow-root
{10,100(1,3)2}
Ganzapgulus / Gangulus-pow-goobol
{10,100(2,3)2}
Quadrilatri
{3,3(0,4)2} = {3,3(3,3)2}
Quadriladecal
{10,10(0,4)2} = {10,10(10,3)2}
Geengulus
{10,100(0,4)2}
Quintilatri
{3,3(0,5)2}
Quintiladecal
{10,10(0,5)2}
Gowngulus
{10,100(0,5)2}
Sextilatri
{3,3(0,6)2}
Gungulus
{10,100(0,6)2}
Septilatri
{3,3(0,7)2}
Gagulus
{10,100(0,7)2}
Octilatri
{3,3(0,8)2}
Gyngulus
{10,100(0,8)2}
Nonilatri
{3,3(0,9)2}
Goungulus
{10,100(0,9)2}
Decilatri
{3,3(0,10)2}
Dudecadecadecal / Deciladecal
{10,10(0,0,1)2} = {10,10(0,10)2} = {10,10(10,9)2}
Bongulus
{10,100(0,0,1)2}
This is a 100^(100^2) array of tens
Dueli-bongulus / Bongulus-mul-bongulus
{10,100(0,0,1)(0,0,1)2}
Trioli-bongulus / Bongulus-mul-bongulus-mul-bongulus
{10,100(0,0,1)(0,0,1)(0,0,1)2}
Bongulusblast / Bongulusfact / Bongulus-pow-root
{10,100(1,0,1)2}
Bonzapgulus / Bongulus-pow-goobol
{10,100(2,0,1)2}
Boncolossgulus / Bongulus-pow-goxxol
{10,100(3,0,1)2}
Bongongulgulus / Bongulus-pow-gongulus(ium)
{10,100(0,1,1)2}
Bongongulgulusblast / Bongulus-pow-gongulusfactium
{10,100(1,1,1)2}
Bongingulgulus / Bongulus-pow-gingulus
{10,100(0,2,1)2}
Bongangulgulus / Bongulus-pow-gangulus
{10,100(0,3,1)2}
Bingulus
{10,100(0,0,2)2}
Bingulusblast / Bingulus-pow-boogol
{10,100(1,0,2)2}
Bingongulgulus / Bingulus-pow-goobol
{10,100(0,1,2)2}
Trimentri / Tritritritri
{3,3(0,0,0,1)2} = {3,3(0,0,3)2} = {3,3(3,2,2)2}
Bangulus
{10,100(0,0,3)2}
Beengulus
{10,100(0,0,4)2}
Bowngulus
{10,100(0,0,5)2}
Bungulus
{10,100(0,0,6)2}
Trongulus
{10,100(0,0,0,1)2}
Trongulusblast
{10,100(1,0,0,1)2}
Trongongulgulus
{10,100(0,1,0,1)2}
Tronbongulgulus
{10,100(0,0,1,1)2}
Tronbongongulgulgulusblast
{10,100(1,1,1,1)2}
Tringulus
{10,100(0,0,0,2)2}
Trangulus
{10,100(0,0,0,3)2}
Treengulus
{10,100(0,0,0,4)2}
Trowngulus
{10,100(0,0,0,5)2}
Trungulus
{10,100(0,0,0,6)2}
Quadrongulus
{10,100(0,0,0,0,1)2}
Quadrongulusblast
{10,100(1,0,0,0,1)2}
Quadrontronbongongulgulgulgulusblast
{10,100(1,1,1,1,1)2}
Quadringulus
{10,100(0,0,0,0,2)2}
Quadrangulus
{10,100(0,0,0,0,3)2}
Quintongulus
{10,100(0,0,0,0,0,1)2}
Quintonquadrontronbongongulgulgulgulgulusblast
{10,100(1,1,1,1,1,1)2}
Quintingulus
{10,100(0,0,0,0,0,2)2}
Sextongulus
{10,100(0,0,0,0,0,0,1)2}
Septongulus
{10,100(0,0,0,0,0,0,0,1)2}
Octongulus
{10,100(0,0,0,0,0,0,0,0,1)2}
Nonongulus
{10,100(0,0,0,0,0,0,0,0,0,1)2}
Trimendecal
{10,10((1)1)2} = {10,10(0,0,0,0,0,0,0,0,0,0,1)2}
Decongulus
{10,100(0,0,0,0,0,0,0,0,0,0,1)2}
Vigintongulus
{10,100(0,0,0,...,0,0,0,1)2}
there are 20 zeroes
Next serie: theinfinityseeker's goplexulus series