The Unix epoch (or Unix time or POSIX time or Unix timestamp) is the number of seconds that have elapsed since January 1, 1970 (midnight UTC/GMT), not counting leap seconds (in ISO 8601: 1970-01-01T00:00:00Z).Literally speaking the epoch is Unix time 0 (midnight 1/1/1970), but 'epoch' is often used as a synonym for Unix time.Some systems store epoch dates as a signed 32-bit integer, which might cause problems on January 19, 2038 (known as the Year 2038 problem or Y2038).The converter on this page converts timestamps in seconds (10-digit), milliseconds (13-digit) and microseconds (16-digit) to readable dates.

World Time Buddy (WTB) is a convenient world clock, a time zone converter, and an online meeting scheduler. It's one of the best online productivity tools for those often finding themselves traveling, in flights, in online meetings or just calling friends and family abroad.


Gif To Png Converter Download


Download 🔥 https://fancli.com/2y4D45 🔥



This free online file converter lets you convert media easy and fast from one format to another. We support a lot of different source formats, just try. If you can't find the conversion you need, please let us know and write us an e-mail. We probably can help you...

The California Air Resources Board, with assistance from aftermarket catalytic converter manufacturers, has been developing a database to store and retrieve information on aftermarket catalytic converters that have been approved for use in California. These catalytic converters comply with the new regulations that became effective January 1, 2009. The database is currently under construction and contains some of the catalytic converters approved for OBD II vehicles. Once finalized, it will also include catalytic converters for non-OBD II vehicles.

*Toyota: Please follow this link to see catalytic converters that are legal on 2001-2004 4.7 liter Toyota Sequoia and 2003-2004 4.7 liter Toyota Tundra. to see catalytic converters that are legal on 2001-2004 4.7 liter Toyota Sequoia and 2003-2004 4.7 liter Toyota Tundra.

To access Executive Orders that are not shown in the database, please view the complete list of approved catalytic converters under the new regulations. Also, to access Executive Orders for only pre-OBD II vehicles under the new regulations please view the Pre-OBD II EO Listing.

For information on Executive Orders issued under the old regulations, view the summary list. All Executive Orders on this summary list are void and no longer in force and effect. The catalytic converters they cover cannot be sold in California effective December 31, 2008. Likewise, the used catalytic converters they covered cannot be sold in California effective July 10, 2008.

Please note that the database and lists are applicable to passenger cars, light-duty trucks, and medium-duty vehicles only. Executive Orders for motorcycle aftermarket catalytic converters can be viewed in the Motorcycle Aftermarket Parts Page.

A catalytic converter is an exhaust emission control device which converts toxic gases and pollutants in exhaust gas from an internal combustion engine into less-toxic pollutants by catalyzing a redox reaction. Catalytic converters are usually used with internal combustion engines fueled by gasoline or diesel, including lean-burn engines, and sometimes on kerosene heaters and stoves.

The first widespread introduction of catalytic converters was in the United States automobile market. To comply with the U.S. Environmental Protection Agency's stricter regulation of exhaust emissions, most gasoline-powered vehicles starting with the 1975 model year are equipped with catalytic converters.[1][2][3] These "two-way" converters combine oxygen with carbon monoxide (CO) and unburned hydrocarbons (HC) to produce carbon dioxide (CO2) and water (H2O). Although two-way converters on gasoline engines were rendered obsolete in 1981 by "three-way" converters that also reduce oxides of nitrogen (.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}NOx);[4] they are still used on lean-burn engines to oxidize particulate matter and hydrocarbon emissions (including diesel engines, which typically use lean combustion), as three-way-converters require fuel-rich or stoichiometric combustion to successfully reduce NOx.

Although catalytic converters are most commonly applied to exhaust systems in automobiles, they are also used on electrical generators, forklifts, mining equipment, trucks, buses, locomotives, motorcycles, and on ships. They are even used on some wood stoves to control emissions.[5] This is usually in response to government regulation, either through environmental regulation or through health and safety regulations.

Catalytic converter prototypes were first designed in France at the end of the 19th century, when only a few thousand "oil cars" were on the roads; these prototypes had inert clay-based materials coated with platinum, rhodium, and palladium and sealed into a double metallic cylinder.[6] A few decades later, a catalytic converter was patented by Eugene Houdry, a French mechanical engineer. Houdry was an expert in catalytic oil refining, having invented the catalytic cracking process that all modern refining is based on today.[7] Houdry moved to the United States in 1930 to live near the refineries in the Philadelphia area and develop his catalytic refining process. When the results of early studies of smog in Los Angeles were published, Houdry became concerned about the role of smokestack exhaust and automobile exhaust in air pollution and founded a company called Oxy-Catalyst. Houdry first developed catalytic converters for smokestacks, called "cats" for short, and later developed catalytic converters for warehouse forklifts that used low grade, unleaded gasoline.[8] In the mid-1950s, he began research to develop catalytic converters for gasoline engines used on cars and was awarded United States Patent 2,742,437 for his work.[9]

Catalytic converters were further developed by a series of engineers including Carl D. Keith, John J. Mooney, Antonio Eleazar, and Phillip Messina at Engelhard Corporation,[10][11] creating the first production catalytic converter in 1973.[12][unreliable source?]

The first widespread introduction of catalytic converters was in the United States automobile market. To comply with the U.S. Environmental Protection Agency's new exhaust emissions regulations, most gasoline-powered vehicles manufactured from 1975 onwards are equipped with catalytic converters. Early catalytic converters were "two-way", combining oxygen with carbon monoxide (CO) and unburned hydrocarbons (HC, chemical compounds in fuel of the form CmHn) to produce carbon dioxide (CO2) and water (H2O).[4][1][2][3] These stringent emission control regulations also resulted in the removal of the antiknock agent tetraethyl lead from automotive gasoline, to reduce lead in the air. Lead and its compounds are catalyst poisons and foul catalytic converters by coating the catalyst's surface. Requiring the removal of lead allowed the use of catalytic converters to meet the other emission standards in the regulations.[13]

Catalytic converters require a temperature of 400 C (752 F) to operate effectively. Therefore, they are placed as close to the engine as possible, or one or more smaller catalytic converters (known as "pre-cats") are placed immediately after the exhaust manifold.

This type of catalytic converter is widely used on diesel engines to reduce hydrocarbon and carbon monoxide emissions. They were also used on gasoline engines in American and Canadian-market automobiles until 1981. Because of their inability to control oxides of nitrogen, they were superseded by three-way converters.

Three-way catalytic converters have the additional advantage of controlling the emission of nitric oxide (NO) and nitrogen dioxide (NO2) (both together abbreviated with NOx and not to be confused with nitrous oxide (N2O)). NOx species are precursors to acid rain and smog.[19]

Since 1981, "three-way" (oxidation-reduction) catalytic converters have been used in vehicle emission control systems in the United States and Canada; many other countries have also adopted stringent vehicle emission regulations that in effect require three-way converters on gasoline-powered vehicles. The reduction and oxidation catalysts are typically contained in a common housing; however, in some instances, they may be housed separately. A three-way catalytic converter has three simultaneous tasks:[19]

These three reactions occur most efficiently when the catalytic converter receives exhaust from an engine running slightly above the stoichiometric point. For gasoline combustion, this ratio is between 14.6 and 14.8 parts air to one part fuel, by weight. The ratio for autogas (or liquefied petroleum gas LPG), natural gas, and ethanol fuels can vary significantly for each, notably so with oxygenated or alcohol based fuels, with e85 requiring approximately 34% more fuel, requiring modified fuel system tuning and components when using those fuels. In general, engines fitted with 3-way catalytic converters are equipped with a computerized closed-loop feedback fuel injection system using one or more oxygen sensors,[citation needed] though early in the deployment of three-way converters, carburetors equipped with feedback mixture control were used.

For compression-ignition (i.e., diesel) engines, the most commonly used catalytic converter is the diesel oxidation catalyst (DOC). DOCs contain palladium and/or platinum supported on alumina. This catalyst converts particulate matter (PM), hydrocarbons, and carbon monoxide to carbon dioxide and water. These converters often operate at 90 percent efficiency, virtually eliminating diesel odor and helping reduce visible particulates. These catalysts are ineffective for NOx, so NOx emissions from diesel engines are controlled by exhaust gas recirculation (EGR). e24fc04721

download manchester city logo

dungeons amp; dragons est zlodj download

practical manual of pharmacology pdf download

photo background hd 4k download

merry christmas and happy new year 2022 images free download