The publication list below is probably an outdated one, a more up-to-date publication list can be found here.
K Choudhary, KF Garrity, G. Pilania, F Tavazza, Efficient Computational Design of 2D van der Waals Heterostructures: Band-Alignment, Lattice-Mismatch, Web-app Generation and Machine-learning, submitted to NPJ Computational Materials, arXiv preprint arXiv:2004.03025 (2020).G. Pilania, A Ghosh, S Hartman, R Mishra, C Stanek, B Uberuaga, Anion Order in Oxysulfide Perovskites: Origins and Implications, NPJ Computational Materials 6, 71 (2020).G. Pilania, PP Dholabhai, BP Uberuaga, Role of Symmetry, Geometry, and Termination Chemistry on Misfit Dislocation Patterns at Semicoherent Heterointerfaces, Matter 2, 1324 (2020).G. Pilania, PV Balachandran, JE Gubernatis, T Lookman, Data-Based Methods for Materials Design and Discovery: Basic Ideas and General Methods, Synthesis Lectures on Materials and Optics 1, 1-188 (2020).B. P. Uberuaga, R. Perriot, and G. Pilania, The impact of chemical order on defect transport in mixed pyrochlores, submitted to Phys. Chem. Chem. Phys., under review (2019).A. Thind, S. Kavadiya, M. Kouhnavard, R. Wheelus, S. Cho, L-Y. Lin, H. Mulmudi, A. Borisevich, G. Pilania, P. Biswas, and R. Mishra, KBaTeBiO6: A lead-free, inorganic double-perovskite semiconductor for photovoltaic applications, Submitted to Energy Environ. Sci., under review (2019).R. Batra, G. Pilania, B. P. Uberuaga, and R. Ramprasad, Multi-fidelity Information Fusion with Machine Learning: A Case Study of Dopant Formation Energies in Hafnia, Submitted to ACS Appl Mater Interfaces, under review (2019).G. Pilania, X.-Y. Liu and Z. Wang, Data-enabled Structure-Property Mappings for Lanthanide-Activated Inorganic Scintillators, Accepted for publication in J. Mater. Sci. (2019).G. Pilania, B. Puchala, B. P. Uberuaga, Distortion-stabilized ordered structures in A2BB’O7 mixed pyrochlores, NPJ Comp. Mater. 5, 7 (2019).J. Chapman, R. Batra, B. P. Uberuaga, G. Pilania and R. Ramprasad, A comprehensive computational study of adatom diffusion on the aluminum (1 0 0) surface, Comp. Mater. Sci. 158, 353 (2019).G. Pilania, E. Weis, E. M. Walker, R. D. Gilbertson, R. E. Muenchausen and E. I. Simakov, Computational screening of organic polymer dielectrics for novel accelerator technologies, Sci. Rep. 8, 9258 (2018).G. Pilania, S. K. Yadav, M. Nikl, B. P. Uberuaga and C. R. Stanek, Role of Multiple Charge States of Ce in the Scintillation of ABO3 Perovskites, Phys. Rev. Applied 10, 024026 (2018).G. Pilania, K. J. McClellan, C. R. Stanek and B. P. Uberuaga, Physics-informed machine learning for inorganic scintillator discovery, J. Chem. Phys. 148, 241729 (2018).H. Zong, G. Pilania, X. Ding, G. J. Ackland and T. Lookman, Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning, NPJ Comp. Mater. 4, 48 (2018).E. Simakov, R. England, R. Gilbertson, M. Herman, G. Pilania, D. Shchegolkov, E. Walker, E. Weis and K. Wootton, Possibilities for Fabricating Polymer Dielectric Laser Accelerator Structures with Additive Manufacturing, 9th Int. Particle Accelerator Conf.(IPAC'18), Vancouver, BC, Canada 4671 (2018). [doi:10.18429/JACoW-IPAC2018-THPML011]G. Pilania and X. Y. Liu, Machine learning properties of binary wurtzite superlattices, J. Mater. Sci. 53, 6652 (2018).A. Mannodi-Kanakkithodi, A. Chandrasekaran, C. Kim, T. D. Huan, G. Pilania and R. Ramprasad, Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond, Materials Today 21, 785 (2018).R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, Machine learning in materials informatics: recent applications and prospects, NPJ Comp. Mater. 3, 54 (2017).G. Pilania, K. R. Whittle, C. Jiang, R. W. Grimes, C. R. Stanek, K. E. Sickafus, and B. P. Uberuaga, Factors dictating the amorphization propensity of irradiated pyrochlores, Chem. Mater. 29, 2574 (2017).G. Pilania, J. E. Gubernatis, and T. Lookman, Multi-fidelity machine learning models for accurate bandgap predictions of solids, Comp. Mater. Sci. 129, 156-163 (2017).G. Pilania, A. Mannodi-Kanakkithodi, First-principles identification of novel double perovskites for water-splitting applications, J. Mater. Sci. 52, 8518 (2017).A. Mannodi-Kanakkithodi, G. Pilania, and R. Ramprasad, Critical assessment of regression-based machine learning methods for polymer dielectrics, Comp. Mater. Sci. 125, 123 (2016).A. Mannodi-Kanakkithodi, G. Pilania, J. E. Gubernatis, T. Lookman and R. Ramprasad, A Multi-objective Optimization Technique to Design the Pareto Front of Organic Dielectric Polymers, Comp. Mat. Sci. 125, 92 (2016).C. Kim, G. Pilania, and R. Ramprasad, Machine Learning Assisted Predictions of Intrinsic Dielectric Breakdown Strength of ABX3 Perovskites, J. Phys. Chem. C 120, 14575 (2016).C. Kim‡, G. Pilania‡ and R. Ramprasad, From Organized High-throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown, Chem. Mater. 28, 1304 (2016). [‡Equal contribution]T. Lookman, P.V. Balachandran, D. Xue, G. Pilania, T. Shearman, J. Theiler, J. E. Gubernatis, J. Hogden, K. Barros, E. BenNaim, F. J. Alexander, A perspective on materials informatics: state-of-the-art and challenges pp 3–12, book chapter in Information Science for Materials Discovery and Design (Springer International, Switzerland 2016). G. Pilania, A. Mannodi-Kanakkithodi, B. P. Uberuaga, R. Ramprasad, J. E. Gubernatis, T. Lookman, Machine learning bandgaps of double perovskites, Sci. Rep. 6, 19375 (2016).A. Mannodi-Kanakkithodi, G. Pilania, T. D. Huan, T. Lookman and R. Ramprasad, Informatics-Driven Strategy for the Accelerated Design of Polymer Dielectrics, Sci. Rep. 6, 20952 (2016).T. D. Huan, A. Mannodi-Kanakkithodi, C. Kim, V. Sharma, G. Pilania and R. Ramprasad, A comprehensive polymer dataset for accelerated property prediction and design, Sci. Data 3, 160012 (2016).G. Pilania, P. V. Balachandran, C. Kim, T. Lookman, Finding New Perovskite Halides via Machine learning, Frontiers in Materials 3, 19 (2016).G. Pilania, J. E. Gubernatis, and T. Lookman, Classification of Octet AB-type binary compounds using Dynamical Charges: A Materials Informatics Perspective. Sci. Rep. 5, 17504 (2015).S. M. Valone, G. Pilania, X. -Y. Liu, J. R. Allen, T.–C. Wu, S. R. Atlas, and D. H. Dunlap, Model Hamiltonians at the Atomistic Scale: Charge-Transfer Gaps and Gap Closure in Two-Site Systems. Chem. Phys. 143, 181104 (2015).G. Pilania, P. V. Balachandran, J. E. Gubernatis, and T. Lookman, Predicting the formability of ABO3 perovskite solids: A machine learning study, Acta Cryst. B 71, 507 (2015).B. P. Uberuaga and G. Pilania, Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites, Chem. Mater. 27, 5020 (2015).G. Pilania and B. P. Uberuaga, Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl6, J. Appl. Phys. 117 (11), 114103 (2015).G. Pilania, J. E. Gubernatis, and T. Lookman, Structure classification and melting temperature prediction in AB solids via machine learning, Phys. Rev. B 91, 214302 (2015).G. Pilania, X.-Y. Liu, and S. M. Valone, A First Principles Approach to Fragment Ionicity, Chem. Phys. 448, 26 (2015).P. P. Dholabhai, G. Pilania, J. A. Aguiar, A. Misra, and B. P. Uberuaga, Termination chemistry-driven dislocation structure at SrTiO3/MgO heterointerfaces, Nature Comm. 5, (2014).V. Sharma, C. C. Wang, R. G. Lorenzini, R. Ma, Q. Zhu, D. W. Sinkovits, G. Pilania, A. R. Oganov, S. Kumar, G. A. Sotzing, S. A. Boggs, and R. Ramprasad, Rational design of all organic polymer dielectrics, Nature Comm. 5, (2014).G. Pilania, and T. Lookman, Electronic structure and biaxial strain in RbHgF3 perovskite and hybrid improper ferroelectricity in (Na,Rb)Hg2F6 and (K,Rb)Hg2F6 superlattices, Phys. Rev. B 90, 115121 (2014).G. Pilania, B. J. Thijsse, R.G. Hoagland, I. Lazic, S. M. Valone and X.-Y. Liu, Revisiting the Al/Al2O3 Interface: Coherent Interfaces and Misfit Accommodation, Sci. Rep. 4, 4485 (2014). M. Agarwal, M. Misra, S. Kumar, C. C. Wang, G. Pilania, R. Ramprasad, X. Yuan, T. C. M. Chung Enhanced polymeric dielectrics through incorporation of hydroxyl groups, Macromolecules, 47, 1122, (2014). C. C. Wang, G. Pilania, S. A. Boggs, S. Kumar, C. Breneman and R. Ramprasad, Computational strategies for polymer dielectrics design, Polymer, 4, 979, (2014). [Cover-feature]G. Pilania, C. C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad, Accelerating materials property predictions using machine learning, Sci. Rep., 3, 2810 (2013). G. Pilania, C. C. Wang, K. Wu, N. Sukumar, C. Breneman, G. A. Sotzing and R. Ramprasad, New Group IV Chemical Motifs for Improved Dielectric Permittivity of Polyethylene, J. Chem. Inf. Mod. 53, 879 (2013).G. Pilania, K. Slenes and R. Ramprasad, First Principles Study of the Interface Between Silicone and Undoped/Doped BaTiO3, J. Appl. Phys. 113, 064316 (2013).G. Pilania and V. Sharma, First principles investigations of structural, electronic, elastic, and dielectric properties of KMgF3, J. Mater. Sci. 48, 7635 (2013).V. Sharma, G. Pilania, G. A. Rossetti Jr, K. Slenes and R. Ramprasad, Doping and Defect Formation in BaTiO3, Phys. Rev. B, 87, 134109 (2013).D. Bolliger, G. Pilania and S. Boggs, The Effect of Oxidative and Paper Degradation Impurities on Partial Discharge Characteristics of Hexadecane, IEEE Trans. Dielectr. Electr. Insul. 20, 1669 (2013).D. Bolliger, G. Pilania, S. Boggs, The Effect of Aromatic and Sulfur Compounds on Partial Discharge Characteristics of Hexadecane, IEEE Trans. Dielectr. Electr. Insul. 20, 801 (2013).V. Sharma and G. Pilania Electronic, magnetic, optical and elastic properties of Fe2YAl (Y=Ti, V and Cr) using first principles methods, J. Magn. Magn. Mater. 339,142 (2013).C. C. Wang, G. Pilania, R. Ramprasad, M. Agarwal, M. Misra, S. Kumar, X. Yuan and T. C. M. Chung, Dielectric permittivity enhancement in hydroxyl functionalized polyolefins via cooperative interactions with water, Appl. Phys. Lett. 102, 152901 (2013).C. C.Wang, G. Pilania and R. Ramprasad, Dielectric properties of carbon-, silicon-, and germanium-based polymers: A first-principles study, Phys. Rev. B 87, 035103 (2013). G. Pilania, P.-X. Gao, R. Ramprasad, Establishing the LaMnO3 surface phase diagram in an oxygen environment: An ab initio kMC simulation study, J. Phys. Chem. C 116, 26349 (2012).G. Pilania, H. Zhu, R. Ramprasad, Applications of modern density functional theory to surfaces and interfaces, book chapter in A Matter of Density: Exploring the Electron Density Concept in the Chemical, Biological, and Materials Sciences Ed. N. Sukumar; John Wiley & Sons, NJ (2012).G. Pilania and R. Ramprasad, Dielectric properties of ultrathin PbTiO3 nanowires from first principles, J. Mater. Sci. 47, 7580 (2012).C. S. Liu, G. Pilania, C. C. Wang, R. Ramprasad, How critical are the van der Waals interactions in polymer crystals? A first principles investigation, J. Phys. Chem. A, 116, 9347 (2012).G. Pilania and R. Ramprasad, Thermodynamics of Oxygen Chemistry on PbTiO3 and LaMnO3 (001) Surfaces, Mat. Res. Soc. Symp. Proc. 1309, 45 (2012).V. Sharma, G. Pilania, J. E. Lowther, Ferromagnetism in IV main group element (C) and transition metal (Mn) doped MgO: A density functional perspective, AIP Advances 1,32129 (2011). G. Pilania and R. Ramprasad, Adsorption of atomic oxygen on cubic PbTiO3 and LaMnO3 (001) surfaces: A density functional theory study, Surf. Sci. 604, 1889 (2010).G. Pilania and R. Ramprasad, Complex Polarization Ordering in PbTiO3 Nanowires, Phys. Rev. B, 82, 155442 (2010). J. D. Doll, G. Pilania, R. Ramprasad and F. Papadimitrakopoulos, Oxygen-Assisted Unidirectional Growth of CdSe Nanorods Using a Low-Temperature Redox Process, Nano Lett. 10, 680 (2010).G. Pilania, S. P. Alpay and R. Ramprasad, Ab initio study of ferroelectricity in BaTiO3 nanowires, Phys. Rev. B 80, 014113 (2009). G. Pilania, D. Q. Tan, Y. Cao, V. S. Venkataramani, Q. Chen and R. Ramprasad, Ab initio study of antiferroelectric PbZrO3 (001) surfaces, J. Mater. Sci. 44, 5249 (2009).G. Pilania, T. Sadowski and R. Ramprasad, Oxygen Adsorption on CdSe Surfaces: A Case Study of Asymmetric Anisotropic Growth through Ab Initio Computations, J. Phys. Chem. C 113, 1863 (2009).