1. Salnikov E. et al., Cathelicidin-BF: A Potent Antimicrobial Peptide Leveraging Charge and Phospholipid Recruitment against Multidrug-Resistant Clinical Bacterial Isolates, J Am Chem Soc, (2025), 147, 11199–11215, 10.1021/jacs.4c17821.
2. Rima M. et al., In Vitro Activity of Two Novel Antimicrobial Compounds on MDR-Resistant Clinical Isolates, Antibiotics (Basel), (2023), 12, 10.3390/antibiotics12081265.
3. Ramos-Martín F., and N. D’Amelio, Drug resistance: An incessant fight against evolutionary strategies of survival, Microbiol. Res. , (2023), 14, 507–542, 10.3390/microbiolres14020037.
4. Adélaïde M. et al., The Mechanism of Action of SAAP-148 Antimicrobial Peptide as Studied with NMR and Molecular Dynamics Simulations, Pharmaceutics, (2023), 15, 10.3390/pharmaceutics15030761.
5. Ramos-Martín F., and N. D’Amelio, Biomembrane lipids: When physics and chemistry join to shape biological activity, Biochimie, (2022), 203, 118–138, 10.1016/j.biochi.2022.07.011.
6. Guillou M.-C. et al., The PROSCOOP10 Gene Encodes Two Extracellular Hydroxylated Peptides and Impacts Flowering Time in Arabidopsis, Plants, (2022), 11, 10.3390/plants11243554.
7. D’Amelio N. et al., Cognate DNA Recognition by Engrailed Homeodomain Involves a Conformational Change Controlled via an Electrostatic-Spring-Loaded Latch, Int. J. Mol. Sci., (2022), 23, 10.3390/ijms23052412.
8. Rodríguez-Moraga N. et al., The effect of rhamnolipids on fungal membrane models as described by their interactions with phospholipids and sterols: An study, Front Chem, (2023), 11, 1124129, 10.3389/fchem.2023.1124129.
9. Herrera-León C. et al., The Influence of Short Motifs on the Anticancer Activity of HB43 Peptide. Pharmaceutics. 14 (2022), p. 1089.10.3390/pharmaceutics14051089
10. Ramos-Martín F. et al., The potential of antifungal peptide Sesquin as natural food preservative. Biochimie (2022).10.1016/j.biochi.2022.03.015
11. Ramos-Martín F. et al., Bombyx mori Cecropin D could trigger cancer cell apoptosis by interacting with mitochondrial cardiolipin, Biochim. Biophys. Acta Biomembr., (2022), 1864, 184003, 10.1016/j.bbamem.2022.184003.
13. Veeramuthu Natarajan S. et al., NMR Relaxation Dispersion Methods for the Structural and Dynamic Analysis of Quickly Interconverting, Low-Populated Conformational Substates, Methods Mol. Biol., (2022), 2376, 187–203, 10.1007/978-1-0716-1716-8_11.
14. Ramos-Martín F. et al., Molecular basis of the anticancer, apoptotic and antibacterial activities of Bombyx mori Cecropin A, Arch. Biochem. Biophys., (2022), 715, 109095, 10.1016/j.abb.2021.109095.
15. Herrera-León C. et al., The impact of phosphatidylserine exposure on cancer cell membranes on the activity of the anticancer peptide HB43, FEBS J., (2021), 10.1111/febs.16276.
16. Annaval T. et al., Antimicrobial Bombinin-like Peptide 3 Selectively Recognizes and Inserts into Bacterial Biomimetic Bilayers in Multiple Steps, J. Med. Chem., (2021), 64, 5185–5197, 10.1021/acs.jmedchem.1c00310.
17. Ramos-Martín F., and N. D’Amelio, Molecular Basis of the Anticancer and Antibacterial Properties of CecropinXJ Peptide: An In Silico Study, Int. J. Mol. Sci., (2021), 22, 10.3390/ijms22020691.
18. Ramos-Martín F. et al., Antimicrobial Peptide K11 Selectively Recognizes Bacterial Biomimetic Membranes and Acts by Twisting Their Bilayers, Pharmaceuticals , (2020), 14, 10.3390/ph14010001.
19. Ramos-Martín F. et al., ADAPTABLE: a comprehensive web platform of antimicrobial peptides tailored to the user’s research, Life Sci Alliance, (2019), 2, 10.26508/lsa.201900512.