Search this site
Embedded Files
Prof. Gary Walsh
  • Bio
  • Research Lectures
  • Research Articles
  • Professional Affiliations and Activities
Prof. Gary Walsh
  • Bio
  • Research Lectures
  • Research Articles
  • Professional Affiliations and Activities
  • More
    • Bio
    • Research Lectures
    • Research Articles
    • Professional Affiliations and Activities

Research

via AMS:

mathscinet-ams-org.proxy.bib.uottawa.ca/mathscinet/author?authorId=230332 


Publication List (in html format)


P.G. Walsh, <i> An observation concerning the rank of $y^2=x^3+2nx$. </i> to appear in

<a href="https://mathsociety.ph/matimyas/">Matimyas Mat.<a> 2025.<p>


P.G. Walsh, <i> A question of Erdos on 3-powerful numbers and an elliptic curve analogue of the

Ankeny-Artin-Chowla conjecture. </i> to appear in 

<a href="https://web.math.pmf.unizg.hr/~duje/radhazumz/prihvaceni.html">Rad Hazu.<a> 2025.<p>


P.G. Walsh, <i> Explicit estimates on a theorem of Shioda concerning the ranks of curves given by 

$y^2=x^3-a^2x+m^2. </i> to appear in 

<a href="http://www.math.klte.hu/publi">Publicationes Mathematicae Debrecen<a> 2025.<p>


P.G. Walsh, <i> Integral Points on Elliptic Curves: An Exploration into Speculative Number Theory.</i>

to appear in <a href="https://dl.acm.org/toc/sigact/2023/">SIGACT News.</a>, 20 pages, 2024.<p>


M.A. Bennett and P.G. Walsh, <i> Computations and solutions to a problem of Erdos concerning four coprime powerful numbers in arithmetic progression.</i> 2023 INTEGERS conference, 

<a href="https://math.colgate.edu/~integers/a3Proc23/a3Proc23.pdf2024">INTEGERS</a>.<p>


P.G. Walsh, <i> Specializations of a generic rank 2 curve of Shioda.</i> to appear in <a href="https://www.sciencedirect.com/journal/journal-of-number-theory">J. Number Theory.</a>, 2023.<p>


P.G. Walsh, <i>Squares in recurrences using elliptic curves.</i>

to appear in <a href="https://www.worldscientific.com/worldscinet/ijnt">International J. Number Theory.</a> (2023)<p>


P.G. Walsh, <i> A note on lower bounds for ranks using Pell equations. </i> <a href="https://web.math.pmf.unizg.hr/~duje/radhazumz/">Rad Hrvat. Akad. Znan. Umjet. Mat. Znan.</a> vol. 27, 2023.<p>


P.G. Walsh

<i>Observations concerning the representation of positive integers as a sum of three cubes,</i> (2023)

to appear in <a href="https://rmmc.asu.edu/rmj/rmj.html">Rocky Mountain Journal of Mathematics</a><p>


J. Grantham and P.G. Walsh, <i>Representing integers as a sum of three cubes.</i>

see NT arxiv Nov. 2022. pari code <a href="https://mysite.science.uottawa.ca/gwalsh/sumcubes10.txt">here.</a><p>


P.G. Walsh,

<i>The trace of Frobenius for curves of the form $y^2=x^3+dx$.</i>

2022, to appear in <a href="https://ami.uni-eszterhazy.hu/">Annales Mathematicae et Informaticae</a><p>


P.G. Walsh,

<i>An effective version of a theorem of Shioda on the rank of an elliptic curve given by $y^2=f(x)+m^2$,</i>

<a href="http://math.colgate.edu/~integers/">Integers Journal.</a> <b> 22 </b>, (2022).<p>


A. Togbe and P.G. Walsh,

<i>A classical approach to a parametric family of simultaneous Pell equations with applications to a family of Thue equations.</i>

<a href="https://www.springer.com/journal/40590">Boletin de la Sociedad Matemática Mexicana</a>. <b> 28 </b>, (2022).<p>


M.A. Bennett and P.G. Walsh, 

<i>A note on the Computation of Integral Bases in Pure Quartic Number Fields.</i>

<a href="http://www.math.klte.hu/publi">Publicationes Mathematicae Debrecen</a> <b> 100 </b>, (2022).<p>


P.G. Walsh,

<i>Corrigendum on "On two classes of simultaneous Pell equations with no solutions".</i> 

<a href="http://www.ams.org/mcom">Math. Comp.</a> <b> 90 </b> (2021), 2503-2505.<p>


N. Lin, P.G. Walsh and Ping-Zhi Yuan,

<i>Sharp bounds for the number of integral points on

$y^2 = x^3 \pm tx^2 + tpx$.</i> 

Publ. Math. Debrecen <b> 98 </b> (3/4), (2021).

<a href="http://publi.math.unideb.hu/load_jpg.php?p=2444">Publicationes Mathematicae Debrecen</a>

<p>


<!--- P.G. Walsh, Pingzhi Yuan, and Z. Zhang,

<i> The diophantine equation $x^2-(4p^{2m}+1)y^4=-4p^{2m}$ II,</i> submitted.<p> --->


B. He, A. Togbe and P.G. Walsh,

<i> On the intersection of Lucas sequences of distinct type,</i> <a href="http://www.labmath.uqam.ca/~annales/">Ann. Sci. Math. Quebec</a> <b> 35 </b> (2011), 31-61.<p>


P.G. Walsh,

<i> Maximal ranks and integer points on a family of elliptic curves II,</i>

<a href="http://rmmc.eas.asu.edu/abstracts/rmj/rmj.htm">Rocky Mountain Journal of Mathematics</a>

<b> 41 </b> (2011), 311-317.<p>


Yang Hai and P.G. Walsh

<i>On a Diophantine problem of Bennett,</i> 

<a href="http://journals.impan.gov.pl/aa/">Acta Arithmetica</a> <b> 145 </b> (2010), 129-136.<p>



Michael Stoll, P.G. Walsh and Pingzhi Yuan,

<i> The diophantine equation $x^2-(2^{2m}+1)y^4=-2^{2m}$ II,</i>

<a href="http://journals.impan.gov.pl/aa/">Acta Arithmetica</a> <b> 139 </b> (2009), 57-63.

<a href="styuwa.pdf">(pdf) </a><p>


P.G. Walsh,

<i> On the number of large integer points on elliptic curves.</i>

<a href="http://journals.impan.gov.pl/aa/">Acta Arithmetica</a> <b> 138 </b> (2009), 317-327.

<a href="tz2.pdf">(pdf) </a> <p>


P.G. Walsh,

<i> Maximal ranks and integer points on a family of elliptic curves.</i>

<a href="http://www.math.hr/glasnik/index.html">Glasnik Matematicki</a> <b> 44 </b> (2009), 83-87.

<a href="glasnik2009.pdf">(pdf) </a> <p>



F. Luca and P.G. Walsh,

<i> On a sequence of integers arising from a system of Pell equations,</i>

<a href="http://www.staff.amu.edu.pl/~fa/">Functiones et Approximatio Commentarii Mathematici</a>

<b> 38 </b> (2008), 111-116.

<a href="funcapprox2008.pdf">(pdf) </a> <p>



B. He, A. Togbe and P.G. Walsh,

<i> The diophantine equation $x^2-(2^{2m}+1)y^4=-2^{2m}$,</i> 

<a href="http://www.math.klte.hu/publi">Publicationes Mathematicae Debrecen</a>

<b> 73 </b> (2008).

<a href="htw2m1.pdf">(pdf) </a> <p>


P.G. Walsh,

<i> The integer solutions to $y^2=x^3 \pm p^k x$,</i>

<a href="http://rmmc.eas.asu.edu/abstracts/rmj/rmj.htm">Rocky Mountain Journal of Mathematics</a>

<b> 38 </b> (2008), 1285-1301.

<a href="rmjm2008_final.pdf">(pdf) </a> <p>


S. Akhtari, A. Togbe and P.G. Walsh

<i> The Diophantine equation aX^4-bY^2=2,</i>

<a href="http://journals.impan.gov.pl/aa/">Acta Arithmetica</a>

<b> 131 </b> (2008), 145-169.

<a href="atw4.pdf">(pdf) </a><BR>

Addendum: <a href="http://journals.impan.gov.pl/aa/">Acta Arithmetica</a>

<b> 137 </b> (2009), 199-202.

<a href="atwaddend4.pdf">(pdf) </a> <p> 


P.G. Walsh,

<i> On a question of Kaplansky. II.,</i>

<a href="http://www.albmath.org/">Albanian J. Math.</a> 

<b> 2 </b> no. 1, March 2008, 3-5.

<a href="AlbanianJ.pdf">(pdf) </a> <p>



F. Luca and P.G. Walsh,

<i> On a diophantine equation related to a conjecture of Erdos and Graham,</i>

<a href="http://www.math.hr/glasnik/index.html">Glasnik Matematicki</a>

<b> 42 </b> (2007), 281-289.

<a href="erdosens2.pdf">(pdf) </a> <p>



P.G. Walsh,

<i> Sharp bounds for the number of solutions to simultaneous Pell equations,</i>

<a href="http://journals.impan.gov.pl/aa/">Acta Arithmetica</a>

<b> 126 </b> (2007), 125-137.

<a href="simpell06new.pdf">(pdf) </a> <p>



P.G. Walsh,

<i> On a very special class of Ramanujan-Nagell type Diophantine equations,</i>

to appear in <a href="http://www.pphmj.com/abstract/2132.htm">Far East J. Math.</a> <b>24</b> no.1 (2007), 55-58.

<a href="joke.pdf">(pdf) </a> <p>



M.A. Bennett, A. Togbe, and P.G. Walsh, 

<i> A generalization of a theorem of Bumby,</i>

<a href="http://www.worldscinet.com/ijnt/ijnt.shtml">International Journal of Number Theory</a> <b> 2</b> no. 2 (2006), 195-206.

<a href="btw3.pdf">(pdf) </a> <p>



P.G. Walsh,

<i> On a family of quartic equations and an elementary solution to a Diophantine problem of Martin Gardner,</i> 

<a href="http://www.math.hr/glasnik/index.html">Glasnik Matematicki</a> <b>41</b> (2006), 217-221.

<a href="glasnik06.pdf">(pdf) </a> <p>


A. Dujella, C. Fuchs and P.G. Walsh, <i> Diophantine m-tuples for linear polynomials II,</i>

<a href="http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=6904&_auth=y&_acct=C000028338&_version=1&_urlVersion=0&_userid=554534&md5=1b389dff774d57adfc63745c2001e144">Journal of Number Theory</a> <b>120</b> (2006), 213-228.

<a href="jnt2006.pdf">(pdf) </a> <p>


D. Poulakis and P.G. Walsh, <i> A note on the Diophantine equation $x^2-dy^4=1$ with prime discrminant. II,</i>

<a href="http://journals.impan.gov.pl/cm/">Colloquium Mathematicum.</a> <b> 105 </b> (2006), 51-55.

<a href="pw2-2006.pdf">(pdf) </a> <p>


F. Luca, C.F. Osgood and P.G. Walsh, <i> Diophantine approximations and a problem from the

1988 IMO,</i><a href="http://rmmc.eas.asu.edu/abstracts/rmj/rmj.htm">Rocky Mountain Journal of Mathematics</a>

<b> 36 </b> (2006), 637-648.

<a href="luoswa2006.pdf">(pdf) </a> <p>



A. Togbe, P.M. Voutier, and P.G. Walsh, 

<i> Solving a family of Thue equations with an application to the equation $x^2-dy^4=1$,</i>

<a href="http://journals.impan.gov.pl/aa/">Acta Arithmetica</a>

<b> 120 </b> (2005), 39-58.

<a href="tvwproofs.pdf">(pdf) </a> <p>



F. Luca and P.G. Walsh, <i> On a Diophantine equation of Cassels,</i>

<a href="http://www.cambridge.org/uk/journals/journal_catalogue.asp?historylinks=ALPHA&mnemonic=GMJ">Glasgow 

Mathematical Journal</a> <b>47</b> (2005), 303-307.

<a href="cassels2.pdf">(pdf) </a> <p>



P.G. Walsh, <i> Squares in Lucas sequences with rational roots,</i>

<a href="http://www.integers-ejcnt.org">INTEGERS: The Electronic Journal of Combinatorial Number Theory</a> 

<b>5</b> no.3 (2005) A15.

<a href="walsh-integers.pdf">(pdf) </a> <p>



D. Poulakis and P.G. Walsh, <i> A note on the Diophantine equation $x^2-dy^4=1$ with prime discrminant,</i> 

<a href="http://comptes.math.carleton.ca/">Comptes Rendues Math. Sci. Canada</a> <b>27</b> no. 2 (2005), 54-57.

<a href="poulwal.pdf">(pdf) </a> <p>



P.G. Walsh, <i> A note on class number one criteria of Sirola for real quadratic fields,</i>

<a href="http://www.math.hr/glasnik/index.html">Glasnik Matematicki</a> <b>40</b> (2005), 21-27.

<a href="glasnik2005.pdf">(pdf) </a> <p>



F. Luca and P.G. Walsh, <i> On the number of nonquadratic residues which are not primitive

roots,</i> <a href="http://journals.impan.gov.pl/cm/">Colloquium Mathematicum.</a> <b>100</b> (2004), 91-93.

<a href="LUWACOLLMATH.pdf">(pdf) </a> <p>



P.G. Walsh, <i> Diophantine applications of Bennett's abc theorem,</i>

<a href="http://www.math.klte.hu/publi">Publicationes Mathematicae Debrecen.</a> <b>65</b> (2004), 497-512.

<a href="walsh-brindza.pdf">(pdf) </a> <p>



E. Herrmann and P.G. Walsh, <i> On the determination of values in certain ternary recurrence sequences and

the rational torsion on a family of elliptic curves arising from the work of H.C. Williams,</i>

In <a href="http://www.fields.utoronto.ca/programs/scientific/02-03/numtheory/">High Primes and Misdemeanours,</a>

Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, Fields Institute Communications

<b>41</b> (2004), 227-235. A.J. van der Poorten and A. Stein Ed's.

<a href="hughconfpaper.pdf">(pdf) </a> <p>



E. Herrmann, F. Luca, P.G. Walsh, <i> A note on the Ramanujan-Nagell equation,</i>

<a href="http://www.math.klte.hu/publi">Publicationes Mathematicae Debrecen.</a> <b>64</b> (2004), 21-30.

<a href="hlw_f2.pdf">(pdf) </a> <p>



M.J. Jacobson, Jr., A. Pinter, P.G. Walsh, <i> A computational

method for solving the Diophantine equation $y^2=1^k+2^k+...+x^k$,</i>

<a href="http://www.ams.org/mcom">Mathematics of Computation</a> <b>72</b> (2003), 2099-2110.

<a href="jacpinwal.pdf">(pdf) </a> <p>



P.G. Walsh, <i> Near Squares in linear recurrence sequences,</i> 

<a href="http://www.math.hr/glasnik/index.html">Glasnik Matematicki</a> <b>38</b> no.1 (2003), 11-18.

<a href="glasnik1.pdf">(pdf) </a> <p>



P.G. Walsh, <i> On subsums of units in pure cubic number fields, </i>

<a href="http://comptes.math.carleton.ca/">Comptes Rendues Math. Sci. Canada</a> <b>25</b> no. 1 (2003).<p>



F.Luca and P.G. Walsh, <i> The product of like-indexed terms

in binary recurrences,</i>

<a href="http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=6904&_auth=y&_acct=C000028338&_version=1&_urlVersion=0&_userid=554534&md5=1b389dff774d57adfc63745c2001e144">Journal of Number Theory</a>

<b> 96 </b> (2002), 152-173.

<a href="luwa_jnt.pdf">(pdf) </a> <p>


P.G. Walsh, <i> On a question of Kaplansky, </i> 

<a href="http://www.maa.org/pubs/monthly.html">The American Mathematical Monthly</a> 

<b> 109 </b> August-September 2002, 660-661.

<a href="walsh_monthly.pdf">(pdf) </a> <p>


P.G. Walsh, <i> An improved method for solving the Thue equations

$X^4-2rX^2Y^2-sY^4=1$, </i> in 

<a href="http://www.akpeters.com/book.asp?bID=161">Number Theory for the Millennium I</a>

(Proceedings of the Millennial Number Theory Conference, Champaign-Urbana,

Illinois, May 2000), Bruce Berndt, et.al., editors, A.K. Peters Ltd, 2002.

<a href="paulo3.pdf">(pdf) </a> <p>



F. Luca and P.G. Walsh, <i> Squares in Lehmer sequences with 

Diophantine applications,</i>

<a href="http://journals.impan.gov.pl/aa/">Acta Arithmetica</a>

<b> 100 </b> (2001), 47-62. 

<a href="fluca_acta.pdf">(pdf) </a> <p>


F. Luca and P.G. Walsh, <i>A generalization of a theorem of Cohn on 

the equations</i> $x^3-Ny^2= \pm 1$,

<a href="http://rmmc.eas.asu.edu/abstracts/rmj/rmj.htm">Rocky Mountain Journal of Mathematics</a>

<b> 31 </b> no. 2 (2001), 503-509.<p>



P.G. Walsh, <i>A Polynomial-time complexity bound for the computation 

of the singular part of a Puiseux expansion of an algebraic function</i>,

<a href="http://www.ams.org/mcom">Mathematics of Computation</a>

<b> 69 </b> (2000), 1167-1182.

<a href="walsh_mathcomp1.pdf">(pdf) </a> <p>


P.G. Walsh, <i>Irreducibility testing over local fields</i>,

<a href="http://www.ams.org/mcom">Mathematics of Computation</a>

<b> 69 </b> (2000), 1183-1193.

<a href="walsh_mathcomp2.pdf">(pdf) </a> <p>


M.A. Bennett and P.G. Walsh, <i>Simultaneous Pell equations with few 

or no solutions</i>,

<a href="http://www.elsevier.nl/inca/publications/store/5/0/5/6/2/0/">

Indagationes Mathematicae</a>

<b> 11 </b> (2000), 1-12.

<a href="bw_indag.pdf">(pdf) </a> <p>


P.G. Walsh, <i>Diophantine equations of the form</i>

$aX^4-bY^2= \pm 1$, in 

<a href="http://www.degruyter.de/catalog/1520.html">Algebraic Number Theory and

Diophantine Analysis.</a>

(Proceedings of an ICM satellite conference in 

Graz, Austria, August 30 to September 5, 1998),

F. Halter-Koch and R. Tichy, editors, Walter deGruyter, 2000.

<a href="un5.pdf">(pdf) </a> <p>


P.G. Walsh, <i> On Diophantine equations of the form

$(x^m-1)(y^n-1)=z^2$,</i> in

<a href="http://tatra.mat.savba.sk/">Tatra Mt. Math. Publ.</a>

<b> 20 </b> (2000), 1-3.

<a href="slov1.pdf">(pdf) </a> <p>


 

P.G. Walsh, <i>A note on a theorem of Ljunggren and the Diophantine 

equations</i> $x^2-kxy^2+y^4=1,4$, 

<a href="http://link.springer.de/link/service/journals/00013/index.htm">

Archive der Mathematik</a> <b>72</b> (1999), 1-7.

<a href="walsh_archiv.pdf">(pdf) </a> <p>


P.G. Walsh, <i>The Diophantine equation</i>

$X^2-db^2Y^4=1$, 

<a href="http://journals.impan.gov.pl/aa/">

Acta Arithmetica</a> 

<b>57</b> (1999), 179-188.

<a href="mp.pdf">(pdf) </a> <p>


P. Ribenboim and P.G. Walsh, <i>The ABC conjecture and the 

Powerful part  of terms in binary recurring sequences.</i>

<a href="http://www.sciencedirect.com/science?_ob=JournalURL&_cdi=6904&_auth=y&_acct=C000028338&_version=1&_urlVersion=0&_userid=554534&md5=1b389dff774d57adfc63745c2001e144">Journal of Number Theory</a>

<b>74</b> (1999), 134-147.<p>


P.G. Walsh, <i>Efficiency vs. Security in the implementation of 

Public-Key Cryptography</i> Proceedings of the 1999 Australasian Conference 

on Theoretical Computer Science and Discrete Mathematics, 81-105.<p>


M.A. Bennett and P.G. Walsh, <i>The Diophantine equation</i>

$b^2X^4-dY^2=1$. 

<a href="http://www.ams.org/proc">Proceedings of the AMS</a>

<b>127</b> (1999).

<a href="benwal1.pdf">(pdf) </a> <p>


P.G. Walsh, <i>On the complexity of rational Puiseux expansions.</i>

<a href="http://nyjm.albany.edu:8000/PacJ/Papers.html">Pacific Journal 

of Mathematics</a>

<b>188</b> (1999), 369-387.<p>


A.J. van der Poorten and P.G. Walsh, <i>A note on Jacobi symbols

and continued fractions</i>, 

<a href="http://www.maa.org/pubs/monthly.html">American Mathematical

Monthly</a>

<b>106</b> no. 1 (1999), 52-56.<p>


P.G. Walsh, <i>On a conjecture of Schinzel and Tijdeman.</i>

in <a href="http://www.degruyter.de/catalog/1520.html">Number Theory in Progress</a>

p. 577-582. (proceedings of a conference in honour of the sixtieth 

birthday of A. Schinzel, Zakopane, Poland, 1997) Walter de Gruyter, 1999.<p>


P.G. Walsh, <i>A polynomial complexity bound for computations on curves.</i>

<a href="http://www.siam.org/journals/sicomp/sicomp.htm">SIAM Journal on Computing</a>

<b>28</b> (1999), 704-708.<p>


P.G. Walsh, <i>Two classes of simultaneous Pell equations with no solutions.</i>

<a href="http://www.ams.org/mcom">Mathematics of Computation</a>

<b>68</b> (1999), 385-388.<p>



P.G. Walsh, <i>A note on Ljunggren's theorem about the Diophantine 

equation</i> $aX^2-bY^4=1$.

<a href="http://comptes.math.carleton.ca/">Comptes Rendues</a>

Mathematical Reports of the 

Royal Society of Canada <b>20</b> (1998), 113-119.<p>



P.G. Walsh, <i>On integer solutions to</i> $x^2-dy^2=1,z^2-2dy^2=1$.

<a href="http://journals.impan.gov.pl/aa/">Acta Arithmetica</a> 

<b>87</b> (1997), 69-76.<p>



P.G.Walsh, <i>A quantitative version of Runge's theorem on Diophantine 

equations</i>.

<a href="http://journals.impan.gov.pl/aa/">Acta Arithmetica</a> 

<b>62</b> (1992), 157-172.<p>


<H3>Summer Undergraduate Research Papers</H3>


R.A.Mollin and P.G.Walsh, <i>Proper differences of non-square powerful 

numbers.</i>

<a href="http://comptes.math.carleton.ca/">Comptes Rendues</a>

Mathematical Reports of the Royal Society of Canada <b>10</b> no. 2 (1988), 71-76.<p>


R.A.Mollin and P.G.Walsh, <i>On unit solutions of the equation</i> 

$xyz=x+y+z$ <i>in the ring of integers of a quadratic field.</i>

<a href="http://journals.impan.gov.pl/aa/">Acta Arithmetica</a> 

<b>48</b> (1987), 341-345.<p>


R.A.Mollin and P.G.Walsh, <i>On non-square powerful numbers.</i>

<a href="http://www.sdstate.edu/~wcsc/http/fibcurrent.html">Fibonacci Quarterly</a>

<b>25</b> (1987), 34-37.<p>


R.A.Mollin and P.G.Walsh, <i>On powerful numbers.</i>

<a href="http://www.math.helsinki.fi/EMIS/journals/IJMMS/index.html">International J. Math. and Math. Sci.</a> {\bf 9} (1986), 801-806.<p>


R.A.Mollin and P.G.Walsh, <i>A note on quadratic fields, 

powerful numbers, and the Pellian.</i>

<a href="http://www.math.carleton.ca/comptes/comptes.html">Comptes Rendues</a>

Mathematical Reports of the Royal Society of Canada

<b>8<b>

no. 2 (1986), 109-114.<p>




CONTACT: gwalsh 'at' uottawa.ca

Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse