Zeralix = 10
Unalix = (0)[10] = 100
Balix = (0)(0)[10] = 10^4
Tralix = (0)(0)(0)[10] = 10^8
Quadralix = (0)(0)(0)(0)[10] = 10^16
Quintalix = (0)...5...(0)[10] = 10^32
Sextalix = (0)...6...(0)[10] = 10^64
Septalix = (0)...7...(0)[10] = 10^128
Octalix = (0)...8...(0)[10] = 10^256
Nonalix = (0)...9...(0)[10] = 10^512
Decalix = (0)...10...(0)[10] = 10^1024
Unalupix = (0)(1)[10] = (0)...101...(0)[100] = 10^2^102
Unaladdunalupix = (0)(1)(0)[10] = 10^2^10003
Baladdunalupix = (0)(1)(0)(0)[10] = 10^2^(4+10^8)
Traladdunalupix = (0)(1)(0)(0)(0)[10] = 10^2^(5+10^16)
Quadraladdunalupix = (0)(1)(0)(0)(0)(0)[10] = 10^2^(6+10^32)
Quintaladdunalupix = (0)(1)(0)...5...(0)[10] = 10^2^(7+10^64)
Sextaladdunalupix = (0)(1)(0)...6...(0)[10] = 10^2^(8+10^128)
Septaladdunalupix = (0)(1)(0)...7...(0)[10] = 10^2^(9+10^256)
Octaladdunalupix = (0)(1)(0)...8...(0)[10] = 10^2^(10+10^512)
Nonaladdunalupix = (0)(1)(0)...9...(0)[10] = 10^2^(11+10^1024)
Decaladdunalupix = (0)(1)(0)...10...(0)[10] = 10^2^(12+10^2048)
Unalubix = (0)(1)(0)(1)[10] = (0)(1)(0)...101...(0)[100] = 100^2^(103+100^2^102) = 10^2^(104+10^2^103) ~ 10^2^10^2^103 ~ 10^10^10^2^103 = 10^10^10^10,141,204,801,825,835,211,973,625,643,008 ~ 10^10^10^(1.0141204801×10^31)
Unalutrix = (0)(1)(0)(1)(0)(1)[10] = (0)(1)(0)(1)(0)...101...(0)[100] = (0)(1)(0)(1)[100^2^101] = (0)(1)(0)...1+100^2^102...(0)[100^2^102] = (0)(1)[100^2^(103+100^2^102)] = (0)(1)[10^2^(104+10^2^103)] = (0)...1+10^2^(105+10^2^103)...(0)[10^2^(105+10^2^103)] = 10^2^(106+10^2^103+10^2^(105+10^2^103)) > 10^2^10^2^10^2^103 > 10^10^10^10^10^10,141,204,801,825,835,211,973,625,643,007 > 10^10^10^10^10^(1.0141204801×10^31) > E31#6
Unaluquadrix = (0)(1)(0)(1)(0)(1)(0)(1)[10] > E31#8
Unaluquintix = (0)(1)...5...(0)(1)[10] > E31#10
Unalusextix = (0)(1)...6...(0)(1)[10] > E31#12
Unaluseptix = (0)(1)...7...(0)(1)[10] > E31#14
Unaluctix = (0)(1)...8...(0)(1)[10] > E31#16
Unaluntix = (0)(1)...9...(0)(1)[10] > E31#18
Unaludecix = (0)(1)...10...(0)(1)[10] > E31#20
Balupix = (0)(1)(1)[10] = (0)(1)...101...(0)(1)[100] = (0)(1)...100...(0)(1)(0)...10001...(0)[10000] > (0)(1)...100..(0)(1)[10000^2^100001] > E30103#200
Balupix(n) > E(2^(n^2 + 1))#(2*n^2-1) [for a sufficiently large n]
Here and every such "[for a sufficiently large n]" will mean, a non-degenerate and a number noticably larger than 10. Although this meaning may not always apply, assume it always applies for numbers 100 and above.
Tralupix = (0)(1)(1)(1)[10] = Balupix^101(100) = Balupix^100(Balupix(100)) > Balupix^100(E30102999#20000) > E30102999#20000#101 > 10^^^102
Tralupix(n) > E(floor(log10(2)*n^8))#(2*n^4)#1+n^2 > 10^^^(2+n^2) [for a sufficiently large n]
Quadralupix = (0)(1)(1)(1)(1)[10] = Tralupix^101(100) = Tralupix^100(Tralupix(100)) > Tralupix^100(E15#200000001#10001) > E15#200000001#10001#101 > 10^^^^102
Quintalupix = (0)(1)...5...(1)[10] > 10^^^^^102
Sextalupix = (0)(1)...6...(1)[10] > {10,102,6}
Septalupix = (0)(1)...7...(1)[10] > {10,102,7}
Octalupix = (0)(1)...8...(1)[10] > {10,102,8}
Nonalupix = (0)(1)...9...(1)[10] > {10,102,9}
Decalupix = (0)(1)...10...(1)[10] > {10,102,10}
Unalbix = (0)(1)(2)[10] = (0)(1)...101...(1)[100] > {100,10002,101} > E10001##101
(0)(1)(2)(0)(1)(2) will be called Unalbix-deusifirst because we are applying the *2 on the first exponentiation level. If we applied *2 on second exponentiation level in the ordinal it would be Unalbix-deusisecond.
Unalbixadd-unalixisecond = (0)(1)(2)(1)[10] = (0)(1)(2)...101...(0)(1)(2)[100] > E100000001##10001#101 > {10001,102,1,2}
Unalbixadd-balixisecond = (0)(1)(2)(1)(1)[10] > {10002,102,2,2}
Unalbixadd-tralixisecond = (0)(1)(2)(1)(1)(1)[10] > {10002,102,3,2}
Unalbixadd-quadralixisecond = (0)(1)(2)(1)(1)(1)(1)[10] > {10002,102,4,2}
Unalbixadd-quintalixisecond = (0)(1)(2)(1)...5...(1)[10] > {10002,102,5,2}
Unalbixadd-sextalixisecond = (0)(1)(2)(1)...6...(1)[10] > {10002,102,6,2}
Unalbixadd-septalixisecond = (0)(1)(2)(1)...7...(1)[10] > {10002,102,7,2}
Unalbixadd-octalixisecond = (0)(1)(2)(1)...8...(1)[10] > {10002,102,8,2}
Unalbixadd-nonalixisecond = (0)(1)(2)(1)...9...(1)[10] > {10002,102,9,2}
Unalbixadd-decalixisecond = (0)(1)(2)(1)...10...(1)[10] > {10002,102,10,2}
Unalbix-deusisecond = (0)(1)(2)(1)(2)[10] > {100000002,10002,101,2}
I prefer consistency, so all of the next ones will have same ending unlike Sbiis.
Trideus, Quadeus, Quideus, Sideus, Septideus, Octideus, Nonideus, Decideus
If you wondered why sideus not sextideus it's because:
Sideus is shorter
"sid" roots have been used in these contexts by Sbiis Saibian
Ends with d like quad and quid making it shorter, and still have the "eus" identification marker.
Now, let {a,b,0,1,2} = {a,a,a,b} for sake of discussion. It's an invalid BEAF array, but its little brother aperiotion is {a,b,0,2} = {a,a,b}
Unalbix-trideusisecond = (0)(1)(2)(1)(2)(1)(2)[10] > {101,3,0,1,2} > s(101,3,1,1,2)
Unalbix-quadeusisecond = (0)(1)(2)(1)(2)(1)(2)(1)(2)[10] > {101,4,0,1,2} > s(101,4,1,1,2)
Unalbix-quideusisecond = (0)(1)(2)...5...(1)(2)[10] > {101,5,0,1,2} > s(101,5,1,1,2)
Unalbix-sideusisecond = (0)(1)(2)...6...(1)(2)[10] > {101,6,0,1,2} > s(101,6,1,1,2)
Unalbix-septideusisecond = (0)(1)(2)...7...(1)(2)[10] > {101,7,0,1,2} > s(101,7,1,1,2)
Unalbix-octideusisecond = (0)(1)(2)...8...(1)(2)[10] > {101,8,0,1,2} > s(101,8,1,1,2)
Unalbix-nonideusisecond = (0)(1)(2)...9...(1)(2)[10] > {101,9,0,1,2} > s(101,9,1,1,2)
Unalbix-decideusisecond = (0)(1)(2)...10...(1)(2)[10] > {101,10,0,1,2} > s(101,10,1,1,2)