[41] Ryo Ishibashi, Fuminao Kishimoto*, Tatsushi Yoshioka, Hiroki Yamada, Koki Muraoka, Toshiaki Ina, Hiroki Taniguchi, Akira Nakayama, Toru Wakihara, Kazuhiro Takanabe, Focused Thermal Energy at Atomic Microwave Antenna Sites for Eco-catalysis, Sci. Adv., 2025, in press. (東京大学プレスリリース; 2025年10月11日)
[40] Xi Shen, Zhenyu Zhao, Hong Li, Shuntaro Tsubaki, Fuminao Kishimoto, Georgios D. Stefanidis, Xin Gao, A Review on the Thermometry of Microscopic Hot Spots Induced by Microwave Energy, Renewable and Sustainable Energy Reviews, 2025, in press.
[39] Fuminao Kishimoto, Ryo Ishibashi, Kazuhiro Takanabe, In situ reductive transformation of indium oxides on zeolites towards efficient microwave heating, J. Ceram. Soc. Jpn., 2025, in press.
[38] Ryo Asayama, Masanori Takemoto, Arata Suzuki, Ryuichi Watanabe, Fuminao Kishimoto, Kenta Iyoki, Tatsuya Okubo, Toru Wakihara, Photocatalytic evolution of nitrous oxide from nitric monoxide over Pt-loaded titanium dioxide under UV irradiation, React. Chem. Eng., 2025, 10, 1216.
[37] Yaqian Liu, Fuminao Kishimoto, Xiaofei Lu, Jinjun Li, Kazuhiro Takanabe, CO2 hydrogenation over Fe-Mn-Zn spinel oxide nanohybrids precatalysts, Appl. Catal. B Environ. Energy, 2025, 361, 124675.
[36] Fuminao Kishimoto*, Kazuhiro Takanabe, Electron Storage in Monolayer Tungstate Nanosheets Produced via a Scalable Exfoliation Method, J. Phys. Chem. Lett., 2024, 15, 3509.
[35] Takuya Suguro, Fuminao Kishimoto*, Sota Kuramoto, William J. Movick, Kazuhiro Takanabe, Inverse kinetic isotope effect of ammonia decomposition over Ru/CeO2 using deuterated ammonia, Chem. Commun., 2024, e202301598.
[34] Yudai Kawase, Tomohiro Higashi, Keisuke Obata, Fuminao Kishimoto, Yuriy Pihosh, Kazunari Domen, Kazuhiro Takanabe, Simple immersing method of nanocoating driven by surface tension on uneven surfaces applicable to highly durable Ta3N5 nanorod photoelectrode for water splitting, Chem. Mater. 2024, 36, 2390.
[33] Takuya Suguro, Fuminao Kishimoto*, William J. Movick, Kazuhiro Takanabe, Coherent Evaluation of Energy Efficiency for Microwave Catalytic Reactors Based on the Thermodynamics of Ammonia Synthesis, ChemCatChem, 2024, e202301598.
[32] Fuminao Kishimoto*, Kyohei Hisano, Tatsushi Yoshioka, Kenta Iyoki, Toru Wakihara, Tatsuya Okubo, Drastic photoemission color alternation from single molecular component confined in acid treated zeolites: from pure-blue to white, ACS Appl. Mater. Interfaces, 2023, 15, 49500.
[31] Fuminao Kishimoto*, Tatsushi Yoshioka, Ryo Ishibashi, Hiroki Yamada, Koki Muraoka, Hiroki Taniguchi, Toru Wakihara, Kazuhiro Takanabe*, Direct microwave energy input on a single cation for outstanding selective catalysis, Sci. Adv., 2023, 9, eadi1744. (東京大学プレスリリース; 2023年8月23日)
[30] William J. Movick, Yuuka Kubo, Fuminao Kishimoto, Kazuhiro Takanabe, Low-Temperature Ammonia Synthesis with an In Situ Adsorber under Regenerative Reaction Cycles Surpassing Thermodynamic Equilibrium, ACS Eng. Au 2023, 3, 292.
[29] William J. Movick, Fuminao Kishimoto, Kazuhiro Takanabe, Dynamic surface-coverage alteration based on microkinetic analysis for enhanced ammonia synthesis over ruthenium catalysts at low temperatures, Chem. Eng. J. 2023, 452, 139525.
[28] Ayato Takabayashi, Fuminao Kishimoto, Hiroto Tsuchiya, Hitoshi Mikami, Kazuhiro Takanabe, Photocatalytic formation of gas permeable layer selectively deposited on supported metal nanoparticles for sintering resistant thermal catalysis, Nanoscale Adv. 2023, 5, 1124.
[27] Takuya Suguro, Fuminao Kishimoto, Nobuko Kariya, Tsuyoshi Fukui, Mamiko Nakabayashi, Naoya Shibata, Tsuyoshi Takata, Kazunari Domen, Kazuhiro Takanabe, A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting, Nat. Commun. 2022, 13, 5698.
[26] Takuya Suguro, Fuminao Kishimoto, Kazuhiro Takanabe, Photocatalytic Hydrogen Production under Water Vapor Feeding─A Minireview, Energy Fuels, 2022, 36, 8978.
[25] Masayuki Matsuhisa, Fuminao Kishimoto*, Kosuke Furusawa, Shuntaro Tsubaki, Yuji Wada*, Microwave Boosting of Interfacial Tunneling Electron Transfer in a Quantum Dot-Sensitized Photoelectrode, Bull. Chem. Soc. Jpn. 2022, 95, 288.
[24] Taro Saito, Rafia Ahmad, Fuminao Kishimoto, Tomohiro Higashi, Masao Katayama, Luigi Cavallo, Kazuhiro Takanabe, Identification of distinctive structural and optoelectronic properties of Bi2O3 polymorphs controlled by tantalum addition, J. Mater. Chem. C, 2022, 10, 17925.
[23] HanHsuan Huang, Kesiuke Obata, Fuminao Kishimoto, Kazuhiro Takanabe, Numerical modeling investigations of the impact of a thin p-type cocatalyst modifier on an n-type photon absorber for unbiased overall solar water splitting, Materials Adv., 2022, 3, 9009.
[22] Kentaro Hatagami, Fuminao Kishimoto, Yudai Kawase, Tomohiro Higashi, Vikas Nandal, Kazuhiko Seki, Kazuhiro Takanabe, Design Predictions of n–n Heterojunction Based Photoanode for Efficient Unbiased Overall Solar Water Splitting, Energy Technol., 2021, 2100570.
[21] Taishi Ano, Fuminao Kishimoto*, Shuntaro Tsubaki, Yi-Hsien Lu, J. Nathan Hohman, Masato M. Maitani, Miquel Salmeron, Yuji Wada*, Controlling the Schottky Barrier at the Pt/TiO2 Interface by Intercalation of a Self-Assembled Monolayer with Oriented Dipole Moments, J. Phys. Chem. C, 2021, 125, 13984.
[20] Yosuke Kageshima, Shutaro Tateyama, Fuminao Kishimoto, et al., Photocatalytic oxygen evolution triggered by photon upconverted emission based on triplet–triplet annihilation, Phys. Chem. Chem. Phys., 2021, 23, 5673.
[19] Xingyu Qi, Tatsuya Shinagawa, Fuminao Kishimoto, Kazuhiro Takanabe, Determination and perturbation of the electronic potentials of solid catalysts for innovative catalysis, Chem. Sci., 2021, 12, 540.
[18] Fuminao Kishimoto*, Kyohei Hisano, Toru Wakihara, Tatsuya Okubo*, Aryl radical initiators accumulated within layered silicates realize polystyrene with directly and regioselectively bonded aryl-Terminal groups, Dalton Trans., 2021, 50, 835.
[17] Fuminao Kishimoto*, Kyohei Hisano, Toru Wakihara, Tatsuya Okubo*, Dense integration of stable aromatic radicals within the two-dimensional interlayer space of clay minerals via clay-catalyzed deamination of arylammoniums, Chem. Mater., 2020, 32, 9008.
[16] Masayuki Matsuhisa, Shuntaro Tsubaki, Fuminao Kishimoto, Satoshi Fujii, Iku Hirano, Masahiro Horibe, Eiichi Suzuki, Ryota Shimizu, Taro Hitosugi, Yuji Wada. Hole accumulation at the grain boundary enhances water oxidation at α-Fe2O3 electrodes under a microwave electric field. J. Phys. Chem. C, 2020, 124, 7749. (東京工業大学プレスリリース; 2020年03月25日公開)
[15] Fuminao Kishimoto*, Toru Wakihara, Tatsuya Okubo*, Water-Dispersible Triplet–Triplet Annihilation Photon Upconversion Particle: Molecules Integrated in Hydrophobized Two–Dimensional Interlayer Space of Montmorillonite and Their Application for Photocatalysis in the Aqueous Phase. ACS Appl. Mater. Interfaces, 2020, 12, 7021.
[14] Fuminao Kishimoto*, Dai Mochizuki, Masato M. Maitani, Eiichi Suzuki, Yuji Wada*, Kinetics of Photoinduced Electron Transfer in Alternately Stacked Eu3+:LaNb2O7– and W2O72– Nanosheets As Demonstrated by f–f Radiative Transition of Doped Eu3+, J. Phys. Chem. C 2019, 123, 30029.
[13] Fuminao Kishimoto*, Masayuki Matsuhisa, Takashi Imai, Dai Mochizuki, Shuntaro Tsubaki, Masato M Maitani, Eiichi Suzuki, Yuji Wada*, Remote control of electron transfer reaction by microwave irradiation: kinetic demonstration of reduction of bipyridine derivatives on surface of nickel particle, J. Phys. Chem. Lett., 2019, 10, 3390.; Supplementary cover art
[12] Fuminao Kishimoto*, Dai Mochizuki, Masato M. Maitani, Eiichi Suzuki, Yuji Wada*, Construction of Highly Hierarchical Layered Structure Consisting of Titanate Nanosheets, Tungstate Nanosheets, Ru(bpy)32+, and Pt(terpy) for Vectorial Photoinduced Z-Scheme Electron Transfer, ACS Appl. Mater. Interfaces 2018, 10, 37150.
[11] Ryota Yamano, Yu Shibata, Fuminao Kishimoto, Shuntaro Tsubaki, Yuji Wada, Ken Tanaka, Reversible mechanochromic luminescence of a heteroatom-free helically chiral hydrocarbon, Chem. Lett. 2018, 47, 1228.
[10] Yuji Wada, Shuntaro Tsubaki, Masato M Maitani, Satoshi Fujii, Fuminao Kishimoto, Naoto Haneishi, Physical insight to microwave special effects: nonequilibrium local heating and acceleration of electron transfer, J. Jpn. Pet. Inst., 2018, 61, 98.
[9] Fuminao Kishimoto*, Kah Hon Leong, Shinichiro Kawamura, Naoto Haneishi, Shuntaro Tsubaki, Yuji Wada*, Acceleration of Water Electrolysis by Accumulation of Microwave Energy at a Pt Disk Electrode, Chem. Lett., 2017, 46, 1593.
[8] Fuminao Kishimoto*, Yota Takamura, Shigeki Nakagawa, Yuji Wada*, Manipulation of the Magnetic Properties of Co‐and Fe‐Doped Layered Titanates by Alkyl Ammonium Intercalation, Adv. Mater. Interfaces 2016, 3, 1600509.
[7] Fuminao Kishimoto, Masayuki Matsuhisa, Shinichiro Kawamura, Satoshi Fujii, Shuntaro Tsubaki, Masato M. Maitani, Eiichi Suzuki, Yuji Wada, Enhancement of anodic current attributed to oxygen evolution on α-Fe2O3 electrode by microwave oscillating electric field, Sci. Rep., 2016, 6, 35554.
[6] Taishi Ano, Fuminao Kishimoto, Dai Mochizuki, Shuntaro Tsubaki, Masato M. Maitani, Eiichi Suzuki, Yuji Wada, Distance-depending photoinduced electron transfer at two-dimensional interface in alternate stacked structures of tantalate nanosheets and tungstate nanosheets, Chem .Lett., 2016, 45, 1111.
[5] Fuminao Kishimoto, Taishi Ano, Dai Mochizuki, Takayuki Terauchi, Masato M. Maitani, Eiichi Suzuki, Yuji Wada, Specific electronic absorptions of alternate layered nanostructures of two metal oxides synthesized via a thiol–ene click reaction, RSC Adv. 2016, 6, 73830.
[4] Taishi Ano, Fuminao Kishimoto, Ryo Sasaki, Shuntaro Tsubaki, Masato M. Maitani, Eiichi Suzuki, Yuji Wada, In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes, Phys. Chem. Chem. Phys. 2016, 18, 13173.
[3] Fuminao Kishimoto, Takashi Imai, Satoshi Fujii, Dai Mochizuki, Masato M. Maitani, Eiichi Suzuki, Yuji Wada, Microwave-enhanced photocatalysis on CdS quantum dots-Evidence of acceleration of photoinduced electron transfer, Sci. Rep. 2015, 5, 11308.
[2] Fuminao Kishimoto, Dai Mochizuki, Masato M. Maitani, Eiichi Suzuki, Yuji Wada, Microwave assisted synthesis of high-surface area WO3 particles decorated with mosaic patterns via hydrochloric acid treatment of Bi2W2O9, RSC Adv. 2015, 5, 77839.
[1] Fuminao Kishimoto, Dai Mochizuki, Kozue Kumagai, Masato M. Maitani, Eiichi Suzuki, Yuji Wada, Visible-light-induced electron transfer between alternating stacked layers of tungstate and titanate mediated by excitation of intercalated dye molecules, Phys. Chem. Chem. Phys. 2014, 16, 872.
和文解説、記事など / Reviews and articles (in Japanese)
[8] 岸本史直、石橋涼、高鍋和広、「マイクロ波による触媒活性点の原子レベル選択加熱」、ゼオライト、2025, 42
[7] 岸本史直、「単一イオンのマイクロ波選択加熱が拓く触媒作用」、JEMEA Bulletin, 2025, 10, No.1
[6] 岸本史直、「マイクロ波による触媒加熱で温暖化の画期的な解決を目指す」、SPring-8 NEWS Vol.117、2024年9月 (Link)
[5] 石橋涼、岸本史直、高鍋和広、「マイクロ波による触媒活性点の原子レベル選択加熱」、光アライアンス2024年2月号
[4] 岸本史直、「マイクロ波で駆動する固体触媒反応を特徴づける熱力学パラメーターは何か」、触媒学会誌、2022, 64, 380.
[3] 岸本史直、「ナノ空間を利用した光機能性材料の開発」、ゼオライト学会誌、2021, 38, 52.
[2] 望月大、岸本史直、和田雄二、「無機酸化物ナノ構造体を用いた光誘起電荷分離の制御」、ゼオライト学会誌、2016, 33, 4.
[1] 岸本史直、阿野大史、望月大、和田雄二、「遷移金属酸化物ナノシートの金属錯体修飾による光触媒能の発現」、月刊ケミカルエンジニヤリング、2016, 61, 11.
特許 / Patents
[5] 特開2025-130721「酸素発生剤」2025年2月26日出願
[4] 特開2025-141465「ゼオライトの加熱方法、反応方法、反応生成物の製造方法、および触媒」2024年3月15日出願
[3] 特開2024-144950「ガスタービン設備、水素供給設備、水素供給方法、及び、ボイラ設備」2023年3月31日出願
[2] 特開2023-107761「蒸気由来水分解光触媒、水素製造方法、および製造装置」2023年1月24日出願
[1] 特開2024-013273「不均一触媒の製造方法および不均一触媒」2022年7月20日 出願