Bartolucci, F., Pandolfi, S., and Pennoni, F. (2022), Discrete latent variable models, Annu Rev Stat Appl, 9, pp. 425-452.
Bartolucci, F., Farcomeni, A., and Pennoni, F. (2013), Latent Markov Models for Longitudinal Data, Chapman and Hall/CRC press, Boca Raton, FL.
Besag, J. (1986), On the statistical analysis of dirty pictures, J. R. Stat. Soc., B, 48, pp. 259-279.
Bartolucci, F. and Farcomeni, A. (2022), A hidden Markov space–time model for mapping the dynamics of global access to food, J. R. Stat. Soc., A, 185, pp. 246-266.
Genge, E. and Bartolucci, F. (2022). Are attitudes toward immigration changing in Europe? An analysis based on latent class IRT models. Adv Data Anal Classif., 16, 235- 271.
Brooks, S., Gelman, A., Jones, G., and Meng, X. L. (Eds.). (2011). Handbook of Markov Chain Monte Carlo. CRC press.
Dumenci, L. (2011). The psychometric latent agreement model (PLAM) for discrete latent variables measured by multiple items. Organ. Res. Methods, 14, 91-115.
Strazzera, E., Mura, M., and Contu, D. (2012). Combining choice experiments with psychometric scales to assess the social acceptability of wind energy projects: A latent class approach. Energy Policy, 48, 334-347.
Meyerhoff, J., Bartczak, A., and Liebe, U. (2009) Identifying various types of protesters in contingent valuation using latent class analysis. Working paper on Management in Environmental Planning 27/200.
Breffle, W., Morey, E., and Thacher, J. (2011). A joint latent class model: combining likert- scale preference statements with choice data to harvest preference heterogeneity. Environ Resour Econ, 50, 83–110.
Bestard, A., Riera Font, A., and Hicks, R. (2010). Combining discrete and continuous representations of preference heterogeneity: a latent-class approach. Environ Resour Econ, 47, 477–493.
Morey, E., Thiene, M., De Salvo, M., and Signorello, G. (2008). Using attitudinal data to identify latent classes that vary in their preference for landscape preservation. Ecol Econ, 68, 536–546.
Doepke, M. and Zilibotti, F. (2017). Parenting with style: Altruism and paternalism in intergenerational preference transmission. Econometrica, 85, 1331-1371.
Smith, M. D., and Floro, M. S. (2020). Food insecurity, gender, and international migration in low-and middle-income countries. Food Policy, 91, 101837.
Bjornlund, V., Bjornlund, H., and van Rooyen, A. (2022). Why food insecurity persists in sub-Saharan Africa: A review of existing evidence, Food Sec. 14, 845–864.
Zarkov, D. (2018). Poverty and inequality in Europe. Eur. J. Women's Stud., 25, 133–137.
Valdivielso, J.M. and Fernandez, E. (2006). Vitamin D receptor polymorphisms and diseases. Clin. Chim. Acta.,371,1-12.
Aga, S.S., Banday, M.Z., nissar S., Al Qurashi M., Awadh, A.A., Hakami, A.Y., and Malli, A. (2022). Vitamin D Receptor Polymorphisms and Diseases. Book Genetic Polymorphism and Disease. CRC Press.
Deliens, T., Van Crombruggen, R., Verbruggen, S., De Bourdeaudhuij, I., Deforche, B., and Clarys, P. (2016) Dietary interventions among university students: A systematic review. Appetite, 105, 14–26.
Epton, T., Norman, P., Dadzie, A.-S., Harris, P.R., Webb, T.L., Sheeran, P., A Julious, S., Ciravegna, F., Brennan, A., Meier, P.S., et al. (2014) A theory-based online health behaviour intervention for new university students (U@Uni): Results from a randomised controlled trial. BMC Public Health, 14, 563.
Larson, N.I., Nelson, M.C., Neumark-Sztainer, D., Story, M., Hannan, P.J. (2019). Making Time for Meals: Meal Structure and Associations with Dietary Intake in Young Adults. J. Am. Diet. Assoc., 109, 72–79.
Besag, J. (1975), Statistical analysis of non-lattice data, J. R. Stat. Soc., D, 24, 179-195.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian data analysis. CRC press.
Sisson, S. A., Fan, Y., and Beaumont, M. (Eds.). (2018). Handbook of approximate Bayesian computation. CRC Press.