We should pose some simple benchmark problems to further test our hypotheses. Some thoughts on what they could look like:
a) y = (u*v+w)^2
u characterized by tfn(1,2,3,4)
v characterized by pbox with upper cdf U(1,2) and lower cdf U(3,4)
w characterized by DSS { ([1,3], 1/4), ([2,4], 1/2), ([2,2.5], 1/4) }
all variables are thought to be strictly independent
to compute
y <= 10 (failure)
10 <= y <= 300 (ok)
y >= 300 (suboptimal)
E[y]
b) same as a) but with unknown interaction, i.e. the Frechet case
c) same as a) but with perfect dependence between u and v
d) z = x(T, p, x0) + q for T=1s, dx/dt = -(1+p)*x and x(0) = x0
p is time-invariant, but positive with mean 1, i.e. a Markov distribution
q has mean 0 and variance 1, i.e. a Chebychev distribution
x0 is [100m, 110m]
p, q and x0 are thought to be strictly independent
x(T, p, x0) = exp( -(1+p)*T ) * x0
to compute
z <= 20 (good)
20 <= z <= 80 (ok)
z >= 80 (bad)
E[z]
e) same as d) but with unknown interaction, i.e. the Frechet case
f) same as d) but with perfect dependence between p and x0
The different arguments would have to be 'cast' into the respective frameworks (pba, possibility) and evaluated accordingly.
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Problem 1.
Plot of variables
Original (u, v, w) PBOX (u, v, w) Fuzzy (u, v, w)
--------------------------------------------------------------------------------------------------------
y = (u*v+w)^2
failure: y <= 10
ok: y in [10, 300]
suboptimal: y >= 300
red is independence, blue is perfect , green is frechet
-----------------------------
-----------------------------
Pbox calculation
-----------------------------
-----------------------------
failure Probabilities
Independent | [0, 0.085]
Perfect | [0, 0.22]
Frechet | [0, 0.495]
-----------------------------
ok Probabilities
Independent | [0.844999, 1]
Perfect | [0.57, 1]
Frechet | [0, 1]
-----------------------------
suboptimal Probabilities
Independent | [0, 0.0700001]
Perfect | [0, 0.21]
Frechet | [0, 0.775001]
-----------------------------
Expectation
Independent | [15.96, 243.111]
Perfect | [16.6056, 246.004]
Frechet | [11.0681, 300.745]
-----------------------------
-----------------------------
Fuzzy calculation
-----------------------------
-----------------------------
failure Probabilities
Independent | [0, 0.435]
Perfect | [0, 0.25]
Frechet | [0, 0.5]
-----------------------------
ok Probabilities
Independent | [0.0799999, 1]
Perfect | [0.534999, 1]
Frechet | [0, 1]
-----------------------------
suboptimal Probabilities
Independent | [0, 0.920001]
Perfect | [0, 0.465001]
Frechet | [0, 1]
-----------------------------
Expectation
Independent | [8.92575, 352.959]
Perfect | [14.3019, 286.075]
Frechet | [7.61867, 371.798]
-----------------------------
Fuzzy Independent Revised
-----------------------------
Fuzzy calculation
-----------------------------
-----------------------------
failure Probabilities
Independent | [0, 0.390001]
Perfect | [0, 0.25]
Frechet | [0, 0.5]
-----------------------------
ok Probabilities
Independent | [0.574999, 1]
Perfect | [0.534999, 1]
Frechet | [0, 1]
-----------------------------
suboptimal Probabilities
Independent | [0, 0.425]
Perfect | [0, 0.465001]
Frechet | [0, 1]
-----------------------------
Expectation
Independent | [11.5462, 297.522]
Perfect | [14.3019, 286.075]
Frechet | [7.61867, 371.798]
-----------------------------