IEEE 802.11bb Standard Contributions

[S-10]  M. Uysal, F. Miramirkhani, T. Baykas, and K. Qaraqe,  “IEEE 802.11bb Reference Channel Models for Indoor Environments”, doc.: IEEE 11-18-1582-02-00bb, Sept. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1582-00-00bb-ieee-802-11bb-reference-channel-models-for-indoor-environments.pdf (pdf).

[S-9]  M. Uysal, F. Miramirkhani, and T. Baykas, “IEEE 802.11bb Channel Model for Conference Room Environment”, doc.: IEEE 11-18-1365-00-00bb, Jul. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1365-00-00bb-ieee-802-11bb-channel-model-for-conference-room-environment.docx (docx).

Note: Channel impulse responses (CIRs) discussed in the above documents were selected as “IEEE 802.11bb Reference Channel Models”. These channel models allow a fair comparison of different physical layer proposals submitted to TGbb in response to the Call for Proposals. They are available for public use with instructions in: M. Uysal, F. Miramirkhani, T. Baykas, and K. Qaraqe, “CIRs of IEEE 802.11bb Reference Channel Models”, doc.: IEEE 11-18-1603-00-00bb, Sept. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1603-00-00bb-cirs-of-ieee-802-11bb-reference-channel-models.zip (Database).

[S-8]  M. Uysal, F. Miramirkhani, T. Baykas, K. Qaraqe, and M. Abdallah, “IEEE 802.11bb Reference Channel Models for Gas Pipelines”, doc: IEEE 11-18-1239-01-00bb, Jul. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1239-01-00bb-ieee-802-11bb-reference-channel-models-for-gas-pipelines.pdf (pdf).

[S-7]  M. Uysal, F. Miramirkhani, T. Baykas, K. Qaraqe, and M. Abdallah, “IEEE 802.11bb Reference Channel Models for Underwater Environments”, doc: IEEE 11-18-1238-01-00bb, Jul. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1238-01-00bb-ieee-802-11bb-reference-channel-models-for-underwater-environments.pdf (pdf).

[S-6]  M. Uysal, F. Miramirkhani, T. Baykas, E. Kinav, and O. Rustu, “IEEE 802.11bb Reference Channel Models for Vehicular Communications”, doc: IEEE 11-18-1237-01-00bb, Jul. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1237-01-00bb-ieee-802-11bb-reference-channel-models-for-vehicular-communications.pdf (pdf).

[S-5]  M. Uysal, F. Miramirkhani, T. Baykas, N. Serafimovski, and V. Jungnickel, “IEEE 802.11bb Reference Channel Models for Indoor Environments”, doc: IEEE 11-18-1236-01-00bb, Jul. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1236-01-00bb-ieee-802-11bb-reference-channel-models-for-indoor-environments.pdf (pdf).

IEEE 802.15.7r1 (802.15.13) Standard Contributions

[S-4]  M. Uysal, T. Baykas, F. Miramirkhani, N. Serafimovski, and V. Jungnickel, “TG7r1 Channel Model Document for High-Rate PD Communications”, doc: IEEE 802.15-15/0746r1, Sept. 2015. [Online]. Available: https://mentor.ieee.org/802.15/dcn/15/15-15-0746-01-007a-tg7r1-channel-model-document-for-high-rate-pd-communications.pdf (pdf).

Note: Channel impulse responses (CIRs) discussed in the above document were selected as “IEEE 802.15.7r1 Reference Channel Models”. These channel models allow a fair comparison of different physical layer proposals submitted to TG7r1 in response to the Call for Proposals. They are available for public use with instructions in: M. Uysal, F. Miramirkhani, T. Baykas, N. Serafimovski, and V. Jungnickel, “TG7r1 CIRs Channel Model Document for High-Rate PD Communications”, doc: IEEE 802.15-15/0747r0, Sept. 2015. [Online]. Available: https://mentor.ieee.org/802.15/dcn/15/15-15-0747-00-007a-tg7r1-cirs-channel-model-document-for-high-rate-pd-communications.zip (Database). Further information on channel modeling method can be found in the following documents:

[S-3]  M. Uysal, F. Miramirkhani, T. Baykas, N. Serafimovski, and V. Jungnickel, “LiFi Channel Models: Office, Home and Manufacturing Cell”, doc: IEEE 802.15-15/0685r0, Sept. 2015. [Online]. Available: https://mentor.ieee.org/802.15/dcn/15/15-15-0685-00-007a-lifi-reference-channel-models-office-home-manufacturing-cell.pdf (pdf).

[S-2]  M. Uysal, and F. Miramirkhani, “LiFi Reference Channel Models: Office, Home, and Hospital”, doc: IEEE 802.15-15/0514r1, Jul. 2015. [Online]. Available: https://mentor.ieee.org/802.15/dcn/15/15-15-0514-01-007a-lifi-reference-channel-models-office-home-hospital.pptx (pptx).

[S-1]  M. Uysal, and F. Miramirkhani, “Channel Modeling for Visible Light Communications”, doc: IEEE 802.15-15/0352r1, May 2015. [Online]. Available: https://mentor.ieee.org/802.15/dcn/15/15-15-0352-01-007a-channel-modeling-for-visible-light-communications.pptx (pptx).

Developed Code/Simulator

M. Elamassie, M. Uysal, F. Miramirkhani, T. Baykas, and K. Qaraqe, “IEEE 802.11bb Reference Channel Models”, Dec. 2018. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/69553-ieee-802-11bb-reference-channel-models (Simulator).

Note: This MATLAB Toolbox generates visible light communication (VLC) channel impulse responses based on the document: M. Uysal, F. Miramirkhani, T. Baykas, and K. Qaraqe, “IEEE 802.11bb Reference Channel Models for Indoor Environments”, IEEE 802.11-18/1582r4, Nov. 2018.

Book Chapters

[BC-2] F. Miramirkhani, M. Uysal, and E. Panayirci, “Channel Modeling for Visible Light Communications”, Chapter in Optical Wireless Communications–An Emerging Technology, Springer, 2016.

[BC-1] O. Narmanlioglu, R. C. Kizilirmak, F. Miramirkhani, and M. Uysal, “Cooperative Visible Light Communications”, Chapter in Optical Wireless Communications–An Emerging Technology, Springer, 2016.

Journal Papers

[J-26] B. Antaki, A. H. Dalloul, and F. Miramirkhani, “Intelligent Health Monitoring in 6G Networks: Machine Learning-Enhanced VLC-Based Medical Body Sensor Networks”, Sensors, vol. 25, no. 11: 3280, pp. 1-32, May 2025.


[J-25] R. Bayat Rizi, A. R. Forouzan, F. Miramirkhani, and M. F. Sabahi, “Machine Learning-Driven Adaptive Modulation for VLC-Enabled Medical Body Sensor Networks”, Iranian Journal of Electrical and Electronic Engineering, Special Issue on Applications of Deep Learning in Electrical and Electronic Engineering (ADLEEE), vol. 20, no. 4, pp. 1-11, Dec. 2024.


[J-24] A. H. Dalloul, F. Miramirkhani, and L. Kouhalvandi, A Review of Recent Innovations in Remote Health Monitoring”, Micromachines, vol. 14, no. 12: 2157, pp. 1-22, Dec. 2023.

[J-23] F. Miramirkhani, T. Baykas, M. Elamassie, and M. Uysal, “IEEE 802.11bb Reference Channel Models for Light Communications”, IEEE Communications Standards Magazine, vol. 7, no. 4, pp. 84-89, Dec. 2023.

[J-22] F. Miramirkhani, M. Karbalayghareh, E. Zeydan, and R. Mitra, “Enabling 5G Indoor Services for Residential Environment using VLC Technology”, Physical Communication, vol. 53, pp. 101679, Aug. 2022.

[J-21] B. Donmez, R. Mitra, and F. Miramirkhani, “Channel Modeling and Characterization for VLC-based Medical Body Sensor Networks: Trends and Challenges”, IEEE Access, vol. 9, pp. 153401-153419, Nov. 2021.

[J-20] F. Miramirkhani, M. Karbalayghareh, and M. Uysal, “Effect of Scattering Phase Function on Underwater Visible Light Communication Channel Models”, Physical Communication, vol. 48, pp. 101410, Oct. 2021.

[J-19] F. Miramirkhani, M. Karbalayghareh, and R. Mitra, “Least Minimum Symbol Error Rate based Post-Distortion for Adaptive Mobile VLC Transmission with Receiver Selection”, Physical Communication, vol. 47, pp. 101353, Aug. 2021.

[J-18] K. R. Sekhar, F. Miramirkhani, R. Mitra, and A. C. Turlapaty, “Generic BER Analysis of VLC Channels Impaired by 3D User-Mobility and Imperfect CSI”, IEEE Communications Letters, vol. 25, no. 7, pp. 2319-2323, Jul. 2021.

[J-17] F. Miramirkhani, “A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications”, Electrica, vol. 21, no. 2, pp. 1-8, May 2021.

[J-16] R. Mitra, F. Miramirkhani, V. Bhatia, and M. Uysal, “Low Complexity Least Minimum Symbol Error Rate based Post-Distortion for Vehicular VLC”, IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11800-11810, Oct. 2020.

[J-15] M. Karbalayghareh, F. Miramirkhani, H. B. Eldeeb, R. C. Kizilirmak, S. M. Sait, and M. Uysal, “Channel Modelling and Performance Limits of Vehicular Visible Light Communication Systems”, IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 6891-6901, Jul. 2020.

[J-14] F. Miramirkhani, and M. Uysal, “Channel Modelling for Indoor Visible Light Communications”, Philosophical Transactions of the Royal Society A, Special Issue on The Cross-Disciplinary Challenges towards Mobile Optical Wireless Networks, vol. 378, no. 2169, pp. 1-35, Mar. 2020.

[J-13] H. Abuella, F. Miramirkhani, S. Ekin, M. Uysal, and S. Ahmed, “ViLDAR-Visible Light Sensing Based Speed Estimation using Vehicle's Headlamps”, IEEE Transactions on Vehicular Technology, vol. 68, no. 11, pp. 10406-10417, Nov. 2019.

[J-12] O. Narmanlioglu, R. C. Kizilirmak, F. Miramirkhani, S. Safaraliev, S. M. Sait, and M. Uysal, “Effect of Wiring and Cabling Topologies on the Performance of Distributed MIMO OFDM VLC Systems”, IEEE Access, vol. 7, pp. 52743-52754, Apr. 2019.

[J-11] R. Mitra, F. Miramirkhani, V. Bhatia, and M. Uysal, “Mixture-Kernel Based Post-Distortion in RKHS for Time-Varying VLC Channels”, IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1564-1577, Feb. 2019.

[J-10] M. Elamassie, F. Miramirkhani, and M. Uysal, “Performance Characterization of Underwater Visible Light Communication”, IEEE Transactions on Communications, vol. 67, no. 1, pp. 543-552, Jan. 2019.

[J-9] F. Miramirkhani, M. Uysal, O. Narmanlioglu, M. Abdallah, and K. Qaraqe, “Visible Light Channel Modeling for Gas Pipelines”, IEEE Photonics Journal, vol. 10, no. 2, pp. 1-10, Apr. 2018.

[J-8] F. Miramirkhani, and M. Uysal, “Visible Light Communication Channel Modeling for Underwater Environments with Blocking and Shadowing”, IEEE Access, vol. 6, pp. 1082-1090, Feb. 2018.

[J-7] A. Yesilkaya, E. Basar, F. Miramirkhani, E. Panayirci, M. Uysal, and H. Haas, “Optical MIMO-OFDM with Generalized LED Index Modulation”, IEEE Transactions on Communications, vol. 65, no. 8, pp. 3429-3441, Aug. 2017.

[J-6] O. Narmanlioglu, R. C. Kizilirmak, F. Miramirkhani, and M. Uysal, “Cooperative Visible Light Communications with Full-Duplex Relaying”, IEEE Photonics Journal, vol. 9, no. 3, pp. 1-11, Jun. 2017.

[J-5] F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A Mobile Channel Model for VLC and Application to Adaptive System Design”, IEEE Communications Letters, vol. 21, no. 5, pp. 1035-1038, May 2017.

[J-4] M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications”, IEEE Communications Magazine, vol. 55, no. 1, pp. 212-217, Jan. 2017.

[J-3] F. Miramirkhani, and M. Uysal, “Channel Modeling and Characterization for Visible Light Communications”, IEEE Photonics Journal, vol. 7, no. 6, pp. 1-16, Dec. 2015. (Listed among IEEE Photonics Journal's top 10 most frequently downloaded papers from December 2016 to November 2017).

[J-2] P. Moallem, F. Miramirkhani, and M. Sabahi, “Application of Elliptic Discrete Fourier Transform Type (I) in Denoising and Receiver Design”, Analog Integrated Circuits and Signal Processing, Springer, vol. 85, no. 3, pp. 505-512, Dec. 2015.

[J-1] A. Yesilkaya, F. Miramirkhani, H. F. Alsan, E. Basar, E. Panayirci, and M. Uysal, “Modelling of Visible Light Channels and Performance Analysis for Optical OFDM Systems” (in Turkish), EMO Scientific Journal, vol. 5, no. 9, pp. 19-31, Jun. 2015.

International Conference Papers & Posters

[IC-23] R. Bayat Rizi, A. R. Forouzan, F. Miramirkhani, and M. F. Sabahi, “Machine Learning for Adaptive Modulation in Medical Body Sensor Networks Using Visible Light Communication”, 11th International Symposium on Telecommunication (IST 2024), Tehran, Iran, Oct. 2024.


[IC-22] L. Kouhalvandi, S. Aygun, L. Matekovits, and F. Miramirkhani, “Optimizing Indoor Localization Accuracy with Neural Network Performance Metrics and Software-Defined IEEE 802.11az Wi-Fi Set-Up”, 10th International Conference on Wireless Networks and Mobile Communications (WINCOM 2023), Istanbul, Turkey, Oct. 2023.

[IC-21] B. Donmez, and F. Miramirkhani, “Path Loss and RMS Delay Spread Model for VLC-based Patient Health Monitoring System”, 4th West Asian Symposium on Optical and Millimeter-wave Wireless Communications (WASOWC), Tabriz, Iran (held as a virtual conference due to COVID-19), May 2022.

[IC-20] B. Donmez, and F. Miramirkhani, “Channel Modeling and Characterization for VLC-based MBSNs Impaired by 3D User Mobility”, 13th International Conference on Electrical and Electronics Engineering (ELECO 2021), Bursa, Turkey (held as a virtual conference due to COVID-19), Nov. 2021.

[IC-19] A. Zeshan, M. Karbalayghareh, F. Miramirkhani, M. Uysal, and T. Baykas, “Comparative Performance Evaluation of VLC, LTE and WLAN Technologies in Indoor Environments”, IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom 2021), Bucharest, Romania (held as a virtual conference due to COVID-19), May 2021.

[IC-18] H. B. Eldeeb, F. Miramirkhani, and M. Uysal, “A Path Loss Model for Vehicle-to-Vehicle Visible Light Communications”, IEEE 15th International Conference on Telecommunications (ConTEL 2019), Graz, Austria, Jul. 2019.

[IC-17] M. Elamassie, M. Karbalayghareh, F. Miramirkhani, M. Uysal, M. Abdallah, and K. Qaraqe, “Resource Allocation for Downlink OFDMA in Underwater Visible Light Communications”, IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom 2019), Sochi, Russia, Jun. 2019.

[IC-16] I. Marin-Garcia, F. Miramirkhani, M. Uysal, and R. Perez-Jimenez, “Performance Evaluation of Vehicle-to-Vehicle Visible Light Communications in the Presence of Denial of Service Attacks”, Global LiFi Congress, Paris, France, Jun. 2019.

[IC-15] M. Elamassie, M. Karbalayghareh, F. Miramirkhani, and M. Uysal, “Adaptive DCO-OFDM for Underwater Visible Light Communications”, IEEE 27th Signal Processing, Communication and Applications Conference (SIU), Sivas, Turkey, May 2019.

[IC-14] M. Karbalayghareh, F. Miramirkhani, M. Safari, and M. Uysal, “Vehicular Visible Light Communications with SPAD Receivers”, IEEE Wireless Communications and Networking Conference (WCNC'19), Marrakech, Morocco, Apr. 2019.

[IC-13] H. Abuella, S. Ekin, S. Ahmed, F. Miramirkhani, B. Kebapci, and M. Uysal, “Wireless Sensing using Vehicle Headlamps for Intelligent Transportation Systems: Proof of Concept”, Transportation Consortium of South Central States (Tran-SET) Conference, San Antonio, TX, USA, Apr. 2019.

[IC-12] M. Elamassie, M. Karbalayghareh, F. Miramirkhani, R. C. Kizilirmak, and M. Uysal, “Effect of Fog and Rain on the Performance of Vehicular Visible Light Communications”, IEEE 87th Vehicular Technology Conference (VTC2018-Spring), Porto, Portugal, Jun. 2018.

[IC-11] M. Elamassie, F. Miramirkhani, and M. Uysal, “Channel Modeling and Performance Characterization of Underwater Visible Light Communications”, IEEE 4th Workshop on Optical Wireless Communications (co-located with IEEE ICC'18), Kansas City, MO, USA, May 2018.

[IC-10] S. Safaraliev, F. Miramirkhani, and M. Uysal, “Effect of LED Wiring and Cabling Topologies on Visible Light Communication Channels”, 10th International Conference on Electrical and Electronics Engineering (ELECO 2017), Bursa, Turkey, Nov. 2017.

[IC-9] O. Narmanlioglu, R. C. Kizilirmak, F. Miramirkhani, and M. Uysal, “Rate-Adaptive OFDM MIMO VLC System”, 10th International Conference on Electrical and Electronics Engineering (ELECO 2017), Bursa, Turkey, Nov. 2017.

[IP-8] F. Miramirkhani, and M. Uysal, “Channel Modeling and Characterization for Visible Light Communications”, Communications Technologies and Applications Workshop, Istanbul, Turkey, Aug. 2017.

[IC-7] B. Kebapci, F. Miramirkhani, H. Nouri, and M. Uysal, “A Custom-Design Atmospheric Channel Emulator for the Performance Evaluation of Free Space Optical Communication Systems”, Invited Paper, 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, Jul. 2017. 

[IC-6] M. S. Demir, F. Miramirkhani, and M. Uysal, “Handover in VLC Networks with Coordinated Multipoint Transmission”, IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom 2017), Istanbul, Turkey, Jun. 2017. 

[IC-5] A. Yesilkaya, F. Miramirkhani, E. Basar, E. Panayirci, and M. Uysal, “Performance of MIMO Enhanced Unipolar OFDM with Realistic Indoor Visible Light Channel Models”, IEEE Workshop on Optical Wireless Communication (co-located with the IEEE WCNC'16), Doha, Qatar, Apr. 2016. 

[IC-4] V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O'Brien, E. Ciaramella, Z. Ghassemlooy, R. J. Green, H. Haas, P. A. Haigh, V. Jimenez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A European View on the Next Generation Optical Wireless Communication Standard”, IEEE Conference on Standards for Communications and Networking (CSCN), Tokyo, Japan, Oct. 2015.

[IC-3] A. Yesilkaya, H. F. Alsan, F. Miramirkhani, E. Panayirci, H. Senol, and M. Uysal, “Performance Analysis of DCO-OFDM Systems in the Presence of Realistic Indoor Visible Light Channels”, European Conference on Networks and Communications (EuCNC), Jun. 2015.

[IC-2] A. Yesilkaya, H. Alsan, F. Miramirkhani, E. Panayirci, H. Senol, and M. Uysal, “Modeling of Visible Light Channels and Performance Analysis of ACO-OFDM” (in Turkish), IEEE 23rd Signal Processing, Communication and Applications Conference (SIU), Malatya, Turkey, May 2015.

[IC-1] F. Miramirkhani, M. Uysal, and E. Panayirci, “Novel Channel Models for Visible Light Communications”, Invited Paper, SPIE Photonics West, San Francisco, California, United States, Feb. 2015.

National Conference Papers (In Persian)

[NC-5] F. Miramirkhani, M. F. Sabahi, M. Mivehchy, and M. Yadegari, “Receiver Selection and Data Fusion in Multi-Static Radars Based on Minimization of 2D Error”, 2nd Passive Surveillance Systems Conference (PSSC), 2014.

[NC-4] F. Miramirkhani, M. F. Sabahi, M. Mivehchy, and M. Yadegari, “Offering A Novel and Efficient Method Based on Fuzzy Track-to-Track in Track Fusion”, 22nd Iranian Conference on Electrical Engineering (ICEE), 2014.

[NC-3] F. Miramirkhani, P. Moallem, and M. F. Sabahi, “Elliptic Discrete Fourier Transform in Denoising of Communication Signals”, 21st Iranian Conference on Electrical Engineering (ICEE), 2013.

[NC-2] E. Naghsh, and F. Miramirkhani, “An Algorithm for Noise Reduction from EEG and ECG Signals Using Distributed Time-Delay Neural Networks”, 11th Sharif Conference on Future Electronics (SCFE), 2013.

[NC-1] F. Miramirkhani, and E. Naghsh, “An Algorithm for Noise Reduction Using Distributed Time-Delay Neural Networks”, 1st National Conference New Idea on Electrical Engineering (NCNIEE), 2013.