Publications

IEEE 802.11bb Standard Contributions

[S-10]  M. Uysal, F. Miramirkhani, T. Baykas, and K. Qaraqe,  “IEEE 802.11bb Reference Channel Models for Indoor Environments”, doc.: IEEE 11-18-1582-02-00bb, Sept. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1582-00-00bb-ieee-802-11bb-reference-channel-models-for-indoor-environments.pdf (pdf).

[S-9]  M. Uysal, F. Miramirkhani, and T. Baykas, “IEEE 802.11bb Channel Model for Conference Room Environment”, doc.: IEEE 11-18-1365-00-00bb, Jul. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1365-00-00bb-ieee-802-11bb-channel-model-for-conference-room-environment.docx (docx).

Note: Channel impulse responses (CIRs) discussed in the above documents were selected as “IEEE 802.11bb Reference Channel Models”. These channel models allow a fair comparison of different physical layer proposals submitted to TGbb in response to the Call for Proposals. They are available for public use with instructions in: M. Uysal, F. Miramirkhani, T. Baykas, and K. Qaraqe, “CIRs of IEEE 802.11bb Reference Channel Models”, doc.: IEEE 11-18-1603-00-00bb, Sept. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1603-00-00bb-cirs-of-ieee-802-11bb-reference-channel-models.zip (Database).

[S-8]  M. Uysal, F. Miramirkhani, T. Baykas, K. Qaraqe, and M. Abdallah, “IEEE 802.11bb Reference Channel Models for Gas Pipelines”, doc: IEEE 11-18-1239-01-00bb, Jul. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1239-01-00bb-ieee-802-11bb-reference-channel-models-for-gas-pipelines.pdf (pdf).

[S-7]  M. Uysal, F. Miramirkhani, T. Baykas, K. Qaraqe, and M. Abdallah, “IEEE 802.11bb Reference Channel Models for Underwater Environments”, doc: IEEE 11-18-1238-01-00bb, Jul. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1238-01-00bb-ieee-802-11bb-reference-channel-models-for-underwater-environments.pdf (pdf).

[S-6]  M. Uysal, F. Miramirkhani, T. Baykas, E. Kinav, and O. Rustu, “IEEE 802.11bb Reference Channel Models for Vehicular Communications”, doc: IEEE 11-18-1237-01-00bb, Jul. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1237-01-00bb-ieee-802-11bb-reference-channel-models-for-vehicular-communications.pdf (pdf).

[S-5]  M. Uysal, F. Miramirkhani, T. Baykas, N. Serafimovski, and V. Jungnickel, “IEEE 802.11bb Reference Channel Models for Indoor Environments”, doc: IEEE 11-18-1236-01-00bb, Jul. 2018. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1236-01-00bb-ieee-802-11bb-reference-channel-models-for-indoor-environments.pdf (pdf).

IEEE 802.15.7r1 (802.15.13) Standard Contributions

[S-4]  M. Uysal, T. Baykas, F. Miramirkhani, N. Serafimovski, and V. Jungnickel, “TG7r1 Channel Model Document for High-Rate PD Communications”, doc: IEEE 802.15-15/0746r1, Sept. 2015. [Online]. Available: https://mentor.ieee.org/802.15/dcn/15/15-15-0746-01-007a-tg7r1-channel-model-document-for-high-rate-pd-communications.pdf (pdf).

Note: Channel impulse responses (CIRs) discussed in the above document were selected as “IEEE 802.15.7r1 Reference Channel Models”. These channel models allow a fair comparison of different physical layer proposals submitted to TG7r1 in response to the Call for Proposals. They are available for public use with instructions in: M. Uysal, F. Miramirkhani, T. Baykas, N. Serafimovski, and V. Jungnickel, “TG7r1 CIRs Channel Model Document for High-Rate PD Communications”, doc: IEEE 802.15-15/0747r0, Sept. 2015. [Online]. Available: https://mentor.ieee.org/802.15/dcn/15/15-15-0747-00-007a-tg7r1-cirs-channel-model-document-for-high-rate-pd-communications.zip (Database). Further information on channel modeling method can be found in the following documents:

[S-3]  M. Uysal, F. Miramirkhani, T. Baykas, N. Serafimovski, and V. Jungnickel, “LiFi Channel Models: Office, Home and Manufacturing Cell”, doc: IEEE 802.15-15/0685r0, Sept. 2015. [Online]. Available: https://mentor.ieee.org/802.15/dcn/15/15-15-0685-00-007a-lifi-reference-channel-models-office-home-manufacturing-cell.pdf (pdf).

[S-2]  M. Uysal, and F. Miramirkhani, “LiFi Reference Channel Models: Office, Home, and Hospital”, doc: IEEE 802.15-15/0514r1, Jul. 2015. [Online]. Available: https://mentor.ieee.org/802.15/dcn/15/15-15-0514-01-007a-lifi-reference-channel-models-office-home-hospital.pptx (pptx).

[S-1]  M. Uysal, and F. Miramirkhani, “Channel Modeling for Visible Light Communications”, doc: IEEE 802.15-15/0352r1, May 2015. [Online]. Available: https://mentor.ieee.org/802.15/dcn/15/15-15-0352-01-007a-channel-modeling-for-visible-light-communications.pptx (pptx).

Developed Code/Simulator

M. Elamassie, M. Uysal, F. Miramirkhani, T. Baykas, and K. Qaraqe, “IEEE 802.11bb Reference Channel Models”, Dec. 2018. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/69553-ieee-802-11bb-reference-channel-models (Simulator).

Note: This MATLAB Toolbox generates visible light communication (VLC) channel impulse responses based on the document: M. Uysal, F. Miramirkhani, T. Baykas, and K. Qaraqe, “IEEE 802.11bb Reference Channel Models for Indoor Environments”, IEEE 802.11-18/1582r4, Nov. 2018.

Book Chapters

[BC-2] F. Miramirkhani, M. Uysal, and E. Panayirci, “Channel Modeling for Visible Light Communications”, Chapter in Optical Wireless Communications–An Emerging Technology, Springer, 2016.

[BC-1] O. Narmanlioglu, R. C. Kizilirmak, F. Miramirkhani, and M. Uysal, “Cooperative Visible Light Communications”, Chapter in Optical Wireless Communications–An Emerging Technology, Springer, 2016.

Journal Papers

[J-24] A. H. Dalloul, F. Miramirkhani, and L. Kouhalvandi, A Review of Recent Innovations in Remote Health Monitoring”, Micromachines, vol. 14, no. 12: 2157, pp. 1-22, Dec. 2023.

[J-23] F. Miramirkhani, T. Baykas, M. Elamassie, and M. Uysal, “IEEE 802.11bb Reference Channel Models for Light Communications”, accepted for publication in IEEE Communications Standards Magazine, 2023.

[J-22] F. Miramirkhani, M. Karbalayghareh, E. Zeydan, and R. Mitra, “Enabling 5G Indoor Services for Residential Environment using VLC Technology”, Physical Communication, vol. 53, pp. 101679, Aug. 2022.

[J-21] B. Donmez, R. Mitra, and F. Miramirkhani, “Channel Modeling and Characterization for VLC-based Medical Body Sensor Networks: Trends and Challenges”, IEEE Access, vol. 9, pp. 153401-153419, Nov. 2021.

[J-20] F. Miramirkhani, M. Karbalayghareh, and M. Uysal, “Effect of Scattering Phase Function on Underwater Visible Light Communication Channel Models”, Physical Communication, vol. 48, pp. 101410, Oct. 2021.

[J-19] F. Miramirkhani, M. Karbalayghareh, and R. Mitra, “Least Minimum Symbol Error Rate based Post-Distortion for Adaptive Mobile VLC Transmission with Receiver Selection”, Physical Communication, vol. 47, pp. 101353, Aug. 2021.

[J-18] K. R. Sekhar, F. Miramirkhani, R. Mitra, and A. C. Turlapaty, “Generic BER Analysis of VLC Channels Impaired by 3D User-Mobility and Imperfect CSI”, IEEE Communications Letters, vol. 25, no. 7, pp. 2319-2323, Jul. 2021.

[J-17] F. Miramirkhani, “A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications”, Electrica, vol. 21, no. 2, pp. 1-8, May 2021.

[J-16] R. Mitra, F. Miramirkhani, V. Bhatia, and M. Uysal, “Low Complexity Least Minimum Symbol Error Rate based Post-Distortion for Vehicular VLC”, IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11800-11810, Oct. 2020.

[J-15] M. Karbalayghareh, F. Miramirkhani, H. B. Eldeeb, R. C. Kizilirmak, S. M. Sait, and M. Uysal, “Channel Modelling and Performance Limits of Vehicular Visible Light Communication Systems”, IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 6891-6901, Jul. 2020.

[J-14] F. Miramirkhani, and M. Uysal, “Channel Modelling for Indoor Visible Light Communications”, Philosophical Transactions of the Royal Society A, Special Issue on The Cross-Disciplinary Challenges towards Mobile Optical Wireless Networks, vol. 378, no. 2169, pp. 1-35, Mar. 2020.

[J-13] H. Abuella, F. Miramirkhani, S. Ekin, M. Uysal, and S. Ahmed, “ViLDAR-Visible Light Sensing Based Speed Estimation using Vehicle's Headlamps”, IEEE Transactions on Vehicular Technology, vol. 68, no. 11, pp. 10406-10417, Nov. 2019.

[J-12] O. Narmanlioglu, R. C. Kizilirmak, F. Miramirkhani, S. Safaraliev, S. M. Sait, and M. Uysal, “Effect of Wiring and Cabling Topologies on the Performance of Distributed MIMO OFDM VLC Systems”, IEEE Access, vol. 7, pp. 52743-52754, Apr. 2019.

[J-11] R. Mitra, F. Miramirkhani, V. Bhatia, and M. Uysal, “Mixture-Kernel Based Post-Distortion in RKHS for Time-Varying VLC Channels”, IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1564-1577, Feb. 2019.

[J-10] M. Elamassie, F. Miramirkhani, and M. Uysal, “Performance Characterization of Underwater Visible Light Communication”, IEEE Transactions on Communications, vol. 67, no. 1, pp. 543-552, Jan. 2019.

[J-9] F. Miramirkhani, M. Uysal, O. Narmanlioglu, M. Abdallah, and K. Qaraqe, “Visible Light Channel Modeling for Gas Pipelines”, IEEE Photonics Journal, vol. 10, no. 2, pp. 1-10, Apr. 2018.

[J-8] F. Miramirkhani, and M. Uysal, “Visible Light Communication Channel Modeling for Underwater Environments with Blocking and Shadowing”, IEEE Access, vol. 6, pp. 1082-1090, Feb. 2018.

[J-7] A. Yesilkaya, E. Basar, F. Miramirkhani, E. Panayirci, M. Uysal, and H. Haas, “Optical MIMO-OFDM with Generalized LED Index Modulation”, IEEE Transactions on Communications, vol. 65, no. 8, pp. 3429-3441, Aug. 2017.

[J-6] O. Narmanlioglu, R. C. Kizilirmak, F. Miramirkhani, and M. Uysal, “Cooperative Visible Light Communications with Full-Duplex Relaying”, IEEE Photonics Journal, vol. 9, no. 3, pp. 1-11, Jun. 2017.

[J-5] F. Miramirkhani, O. Narmanlioglu, M. Uysal, and E. Panayirci, “A Mobile Channel Model for VLC and Application to Adaptive System Design”, IEEE Communications Letters, vol. 21, no. 5, pp. 1035-1038, May 2017.

[J-4] M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications”, IEEE Communications Magazine, vol. 55, no. 1, pp. 212-217, Jan. 2017.

[J-3] F. Miramirkhani, and M. Uysal, “Channel Modeling and Characterization for Visible Light Communications”, IEEE Photonics Journal, vol. 7, no. 6, pp. 1-16, Dec. 2015. (Listed among IEEE Photonics Journal's top 10 most frequently downloaded papers from December 2016 to November 2017).

[J-2] P. Moallem, F. Miramirkhani, and M. Sabahi, “Application of Elliptic Discrete Fourier Transform Type (I) in Denoising and Receiver Design”, Analog Integrated Circuits and Signal Processing, Springer, vol. 85, no. 3, pp. 505-512, Dec. 2015.

[J-1] A. Yesilkaya, F. Miramirkhani, H. F. Alsan, E. Basar, E. Panayirci, and M. Uysal, “Modelling of Visible Light Channels and Performance Analysis for Optical OFDM Systems” (in Turkish), EMO Scientific Journal, vol. 5, no. 9, pp. 19-31, Jun. 2015.

International Conference Papers & Posters

[IC-22] L. Kouhalvandi, S. Aygun, L. Matekovits, and F. Miramirkhani, “Optimizing Indoor Localization Accuracy with Neural Network Performance Metrics and Software-Defined IEEE 802.11az Wi-Fi Set-Up”, 10th International Conference on Wireless Networks and Mobile Communications (WINCOM 2023), Istanbul, Turkey, Oct. 2023.

[IC-21] B. Donmez, and F. Miramirkhani, “Path Loss and RMS Delay Spread Model for VLC-based Patient Health Monitoring System”, 4th West Asian Symposium on Optical and Millimeter-wave Wireless Communications (WASOWC), Tabriz, Iran (held as a virtual conference due to COVID-19), May 2022.

[IC-20] B. Donmez, and F. Miramirkhani, “Channel Modeling and Characterization for VLC-based MBSNs Impaired by 3D User Mobility”, 13th International Conference on Electrical and Electronics Engineering (ELECO 2021), Bursa, Turkey (held as a virtual conference due to COVID-19), Nov. 2021.

[IC-19] A. Zeshan, M. Karbalayghareh, F. Miramirkhani, M. Uysal, and T. Baykas, “Comparative Performance Evaluation of VLC, LTE and WLAN Technologies in Indoor Environments”, IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom 2021), Bucharest, Romania (held as a virtual conference due to COVID-19), May 2021.

[IC-18] H. B. Eldeeb, F. Miramirkhani, and M. Uysal, “A Path Loss Model for Vehicle-to-Vehicle Visible Light Communications”, IEEE 15th International Conference on Telecommunications (ConTEL 2019), Graz, Austria, Jul. 2019.

[IC-17] M. Elamassie, M. Karbalayghareh, F. Miramirkhani, M. Uysal, M. Abdallah, and K. Qaraqe, “Resource Allocation for Downlink OFDMA in Underwater Visible Light Communications”, IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom 2019), Sochi, Russia, Jun. 2019.

[IC-16] I. Marin-Garcia, F. Miramirkhani, M. Uysal, and R. Perez-Jimenez, “Performance Evaluation of Vehicle-to-Vehicle Visible Light Communications in the Presence of Denial of Service Attacks”, Global LiFi Congress, Paris, France, Jun. 2019.

[IC-15] M. Elamassie, M. Karbalayghareh, F. Miramirkhani, and M. Uysal, “Adaptive DCO-OFDM for Underwater Visible Light Communications”, IEEE 27th Signal Processing, Communication and Applications Conference (SIU), Sivas, Turkey, May 2019.

[IC-14] M. Karbalayghareh, F. Miramirkhani, M. Safari, and M. Uysal, “Vehicular Visible Light Communications with SPAD Receivers”, IEEE Wireless Communications and Networking Conference (WCNC'19), Marrakech, Morocco, Apr. 2019.

[IC-13] H. Abuella, S. Ekin, S. Ahmed, F. Miramirkhani, B. Kebapci, and M. Uysal, “Wireless Sensing using Vehicle Headlamps for Intelligent Transportation Systems: Proof of Concept”, Transportation Consortium of South Central States (Tran-SET) Conference, San Antonio, TX, USA, Apr. 2019.

[IC-12] M. Elamassie, M. Karbalayghareh, F. Miramirkhani, R. C. Kizilirmak, and M. Uysal, “Effect of Fog and Rain on the Performance of Vehicular Visible Light Communications”, IEEE 87th Vehicular Technology Conference (VTC2018-Spring), Porto, Portugal, Jun. 2018.

[IC-11] M. Elamassie, F. Miramirkhani, and M. Uysal, “Channel Modeling and Performance Characterization of Underwater Visible Light Communications”, IEEE 4th Workshop on Optical Wireless Communications (co-located with IEEE ICC'18), Kansas City, MO, USA, May 2018.

[IC-10] S. Safaraliev, F. Miramirkhani, and M. Uysal, “Effect of LED Wiring and Cabling Topologies on Visible Light Communication Channels”, 10th International Conference on Electrical and Electronics Engineering (ELECO 2017), Bursa, Turkey, Nov. 2017.

[IC-9] O. Narmanlioglu, R. C. Kizilirmak, F. Miramirkhani, and M. Uysal, “Rate-Adaptive OFDM MIMO VLC System”, 10th International Conference on Electrical and Electronics Engineering (ELECO 2017), Bursa, Turkey, Nov. 2017.

[IP-8] F. Miramirkhani, and M. Uysal, “Channel Modeling and Characterization for Visible Light Communications”, Communications Technologies and Applications Workshop, Istanbul, Turkey, Aug. 2017.

[IC-7] B. Kebapci, F. Miramirkhani, H. Nouri, and M. Uysal, “A Custom-Design Atmospheric Channel Emulator for the Performance Evaluation of Free Space Optical Communication Systems”, Invited Paper, 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, Jul. 2017. 

[IC-6] M. S. Demir, F. Miramirkhani, and M. Uysal, “Handover in VLC Networks with Coordinated Multipoint Transmission”, IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom 2017), Istanbul, Turkey, Jun. 2017. 

[IC-5] A. Yesilkaya, F. Miramirkhani, E. Basar, E. Panayirci, and M. Uysal, “Performance of MIMO Enhanced Unipolar OFDM with Realistic Indoor Visible Light Channel Models”, IEEE Workshop on Optical Wireless Communication (co-located with the IEEE WCNC'16), Doha, Qatar, Apr. 2016. 

[IC-4] V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O'Brien, E. Ciaramella, Z. Ghassemlooy, R. J. Green, H. Haas, P. A. Haigh, V. Jimenez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A European View on the Next Generation Optical Wireless Communication Standard”, IEEE Conference on Standards for Communications and Networking (CSCN), Tokyo, Japan, Oct. 2015.

[IC-3] A. Yesilkaya, H. F. Alsan, F. Miramirkhani, E. Panayirci, H. Senol, and M. Uysal, “Performance Analysis of DCO-OFDM Systems in the Presence of Realistic Indoor Visible Light Channels”, European Conference on Networks and Communications (EuCNC), Jun. 2015.

[IC-2] A. Yesilkaya, H. Alsan, F. Miramirkhani, E. Panayirci, H. Senol, and M. Uysal, “Modeling of Visible Light Channels and Performance Analysis of ACO-OFDM” (in Turkish), IEEE 23rd Signal Processing, Communication and Applications Conference (SIU), Malatya, Turkey, May 2015.

[IC-1] F. Miramirkhani, M. Uysal, and E. Panayirci, “Novel Channel Models for Visible Light Communications”, Invited Paper, SPIE Photonics West, San Francisco, California, United States, Feb. 2015.

National Conference Papers (In Persian)

[NC-5] F. Miramirkhani, M. F. Sabahi, M. Mivehchy, and M. Yadegari, “Receiver Selection and Data Fusion in Multi-Static Radars Based on Minimization of 2D Error”, 2nd Passive Surveillance Systems Conference (PSSC), 2014.

[NC-4] F. Miramirkhani, M. F. Sabahi, M. Mivehchy, and M. Yadegari, “Offering A Novel and Efficient Method Based on Fuzzy Track-to-Track in Track Fusion”, 22nd Iranian Conference on Electrical Engineering (ICEE), 2014.

[NC-3] F. Miramirkhani, P. Moallem, and M. F. Sabahi, “Elliptic Discrete Fourier Transform in Denoising of Communication Signals”, 21st Iranian Conference on Electrical Engineering (ICEE), 2013.

[NC-2] E. Naghsh, and F. Miramirkhani, “An Algorithm for Noise Reduction from EEG and ECG Signals Using Distributed Time-Delay Neural Networks”, 11th Sharif Conference on Future Electronics (SCFE), 2013.

[NC-1] F. Miramirkhani, and E. Naghsh, “An Algorithm for Noise Reduction Using Distributed Time-Delay Neural Networks”, 1st National Conference New Idea on Electrical Engineering (NCNIEE), 2013.