Broadband Cryogenic Transient Dielectric Spectroscopy (see Publications more info).
Broader Research Field: All Quantum Technologies
Direct probing of Two-Level-System and point defects in materials using our invented technique called "Broadband, Cryogenic Transient Dielectric Spectroscopy".
High-throughput and modular characterization of defects.
Relevant Publications:
Q. Wang, S. M. Gómez, J. S. Salcedo-Gallo, R. Leibovitz, J. Freeman, S. K. Bedkihal, M. Fitzpatrick "Evidence of Memory Effects in the Dynamics of Two-Level System Defect Ensembles Using Broadband, Cryogenic Transient Dielectric Spectroscopy", arXiv:2505.18263 (2025)
A. P. M. Place, L. V. H. Rodgers, P. Mundada, B. M. Smitham, M. Fitzaptrick, Z. Leng, A. Premkumar, J. Bryon, A. Vrajitoarea, S. Sussman, G. Cheng, T. Madhavan, H. K. Babla, X. H. Le, Y. Gang, B. Jäck, A. Gyenis, N. Yao, R. J. Cava, N. P. de Leon, A. A. Houck "New Material Platform for Superconducting Transmon Qubits with Coherence Times Exceeding 0.3 milliseconds", Nature Communications 12 (2021)
B. L. Dwyer, L. V. H. Rodgers, E. K. Urbach, D. Bluvstein, S. Sangtawesin, H. Zhou, Y. Nassab, M. Fitzaptrick, Z. Yuan, K. De Greve, E. L. Peterson, H. Knowles, T. Sumarac, H Chou, A. Gali, V. V. Dobrovitski, M. D. Lukin, and N. P. de Leon "Probing Spin Dynamics on Diamond Surfaces Using a Single Quantum Sensor", PRX Quantum 3 (2022)
Transmission measurements through the microwave dimer in "Unification of Exceptional Points and Transmission Peak Degeneracies in a Highly Tunable Magnon-Photon Dimer".
Broader Research Field: Quantum Sensing
Leveraging Non-Hermitian Quantum Dynamics to Explore New Quantum Simulation and Quantum Sensing Paradigms.
Harnessing gain and loss to explore non-Hermitian dynamics.
Building magnetometers for real-world sensors.
Relevant Publications:
J. S. Salcedo-Gallo, M. Burgelman, V. P. Flynn, A. S. Carney, M. Hamdan, T. Gerg, D. C. Smallwood, L. Viola, and M. Fitzpatrick, "Demonstration of a Tunable Non-Hermitian Nonlinear Microwave Dimer" Nature Communications, 16 (2025)
A. S. Carney, J. S. Salcedo-Gallo, S. K. Bedkihal, and M. Fitzpatrick "Unification of Exceptional Points and Transmission Peak Degeneracies in a Highly Tunable Magnon-Photon Dimer", arXiv:2506.09141 (2025)
J. F. Barry, R. A. Irion, M. H. Steinecker, D. K. Freeman, J. J. Kedziora, R. G. Wilcox, and D. A. Braje, "Ferrimagnetic Oscillator Magnetometer", Physical Review Applied, 19 (2023)
Hyperbolic Lattice from "Hyperbolic Lattices in Circuit Quantum Electrodynamics" (see Publications for more info).
Broader Research Field: Quantum Simulation and Quantum Computation
Driven dissipative systems for novel physics and sensors.
Exploring non-hermitian physics.
Generating novel open systems Liouvillians.
Learning to use driven-dissipative dynamics as a resource for stabilizing quantum states.
Nonequilibrium quantum simulation using lattices of resonators and qubits.
Relevant Publications:
M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and A. A. Houck, "Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice", Phys. Rev. X 7, 011016 (2017)
V. P. Flynn, E. Cobanera, and L. Viola, ''Topology by dissipation: Majorana bosons in metastable quadratic Markovian dynamics'', Physical Review Letters 127, 245701 (2021)
A. J. Kollár, M. Fitzpatrick, and A. A. Houck, "Hyperbolic Lattices in Circuit Quantum Electrodynamics", Nature 571, 45 (2019)