Shimizu, A., Yokoyama, S., Fermin, A., Mitsuyama, Y., Mizoi, K., Yoshimoto, J., Furukawa, T., Takagaki, K., Okamoto, Y., Okamoto, Y., & Okada, G. (2026). Identifying Physiological and Cognitive Indicators of Subthreshold Depression and Major Depressive Disorder Progression Risk. Neuropsychiatric Disease and Treatment, Volume 22, 1–23. https://doi.org/10.2147/NDT.S526034
Kiguchi, R., Hata, A., Fujita, S., Yoshida, Y., Kitanishi, Y., Yoshimoto, J., Tajika, A., & Furukawa, T. A. (2025). Predicting symptom worsening in remitted depression on maintenance pharmacotherapy using digital biomarkers: A prognostic modeling study using machine learning. Journal of Affective Disorders, 389. https://doi.org/10.1016/j.jad.2025.119703
Kashiwagi, Y., Tokuda, T., Takahara, Y., Masaki, Y., Sakai, Y., Yoshimoto, J., Yamashita, A., Yoshioka, T., Ogawa, K., Okada, G., Okamoto, Y., Kawato, M., & Yamashita, O. (2025). Generalizable stratification based on thalamo–somatomotor functional connectivity predicts responses to antidepressants in patients with depression. Molecular Psychiatry. https://doi.org/10.1038/s41380-025-03224-5
Shima, S., Ohdake, R., Mizutani, Y., Tatebe, H., Koike, R., Kasai, A., Bagarinao, E., Kawabata, K., Ueda, A., Ito, M., Hata, J., Ishigaki, S., Yoshimoto, J., Toyama, H., Tokuda, T., Takashima, A., & Watanabe, H. (2025). Virtual reality navigation for the early detection of Alzheimer’s disease. Frontiers in Aging Neuroscience, 17. https://doi.org/10.3389/fnagi.2025.1571429
Ueno, H., Iyanaga, Y., Kunida, K., Hara, Y., Miura, H., Nakai, Y., Tanuma, M., Hayashida, M., Yokoyama, R., Ohkubo, J., Seiriki, K., Hayata-Takano, A., Ao, T., Yamaguchi, S., Kitaoka, S., Furuyashiki, T., Ago, Y., Nakazawa, T., Takuma, K., Yoshimoto, J., Hashimoto, H., Kasai, A. (2025). Recovery of centralities in medial prefrontal and sensory-related cortices associated with social behavior improvements in an autism mouse model. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-05996-w
Kawabata, S., Miura, G., Akaike, Y., Nagai, S., Hachiya, K., Imai, T., Takeda, H., Yoshioka, A., Kaneko, S., Hachiya, Y., Fujita, N., Kannon, T., & Yoshimoto, J. (2025). Development of a machine-learning model for patient satisfaction prediction in lumbar spinal stenosis surgery: A multicenter study with ZCQ and JOABPEQ scores. Journal of Orthopaedic Science. https://doi.org/10.1016/j.jos.2025.06.014
Pandey, V., Hosokawa, T., Hayashi, Y., & Urakubo, H. (2025). Multiphasic protein condensation governed by shape and valency. Cell Rep, 44(4), 115504. https://doi.org/10.1016/j.celrep.2025.115504
Miyata, T., Hagiwara, D., Ashida, R., Naito, S., Kawaguchi, Y., Handa, T., Kobayashi, T., Sugiyama, M., Onoue, T., Iwama, S., Suga, H., Banno, R., Matsumoto, M., Urakubo, H., Ohno, N., & Arima, H. (2025). Phagophores originate from endoplasmic reticulum membranes in vasopressin neurons in a mouse model of familial neurohypophysial diabetes insipidus. Cell Tissue Res, 402(2), 139-144. https://doi.org/10.1007/s00441-025-04013-w
Ezure, T., Matsuzaki, K., Urakubo, H., & Ohno, N. (2025). Three-dimensional ultrastructural analysis of human skin with the arrector pili muscle interacting with the hair follicle epithelium. Sci Rep, 15(1), 4195. https://doi.org/10.1038/s41598-025-88615-y
Urakubo, H. (2025). A guide to CNN-based dense segmentation of neuronal EM images. Microscopy (Oxf), 74(3), 223-232. https://doi.org/10.1093/jmicro/dfaf002
Sugiura M, Shimizu J, Yano Y, Fujino M, Nakano T, Miyata M, Niinomi K. (2025) Neonatal Nurses' Perceptions and Objective Indices of Noise During Quiet Hours in the NICU. Adv Neonatal Care. 25(4):p 353-362, https://doi.org/10.1097/anc.0000000000001274.
Upadhyay R.K., Pandey V., Parshad R.D. (2025) From multi-scale to non-local models Comment on “Mathematical models on Alzheimer’s disease and its treatment: A review” by M. Maji & S. Khajanchi., Physics of Life Reviews, 53, 125-127 https://doi.org/10.1016/j.plrev.2025.02.011
Takahara, Y., Kashiwagi, Y., Tokuda, T., Yoshimoto, J., Sakai, Y., Yamashita, A., Yoshioka, T., Takahashi, H., Mizuta, H., Kasai, K., Kunimitsu, A., Okada, N., Itai, E., Shinzato, H., Yokoyama, S., Masuda, Y., Mitsuyama, Y., Okada, G., Okamoto, Y., … Yamashita, O. (2025). Comprehensive evaluation of pipelines for classification of psychiatric disorders using multi-site resting-state fMRI datasets. Neural Networks, 187, 107335. https://doi.org/10.1016/j.neunet.2025.107335
Bai, W., Yamashita, O., & Yoshimoto, J. (2025). Functionally specialized spectral organization of the resting human cortex. Neural Networks, 185, 107195. https://doi.org/10.1016/j.neunet.2025.107195
Yokotani, K., Yamamoto, T., Takahashi, H., Takamura, M., & Abe, N. (2025). Sounds like gambling: detection of gambling venue visitation from sounds in gamblers’ environments using a transformer. Sci Rep, 15, 340. https://doi.org/10.1038/s41598-024-83389-1
Yamashita, O., Yamashita, A., Takahara, Y., Sakai, Y., Okamoto, Y., Okada, G., Takamura, M., Nakamura, M., Itahashi, T., Hanakawa, T., Togo, H., Yoshihara, Y., Murai, T., Okada, T., Narumoto, J., Takahashi, H., Takagishi, H., Hosomi, K., Kasai, K., Okada, N., Abe, O., Imamizu, H., Hayashi, T., Koike, S., Tanaka, S.C., & Kawato, M. (2025) Computational mechanisms of neuroimaging biomarkers uncovered by multicenter resting-state fMRI connectivity variation profile. Mol Psychiatry. https://doi.org/10.1038/s41380-025-03134-6
Hildebrandt M., Koshimizu M., Asada Y., Fukumitsu K., Ohkuma M., Sang N., Nakano T., Kunikata T., Okazaki K., Kawaguchi N., Yanagida T., Lian L., Zhang J., Yamashita T. (2024) Comparative validation of scintillator materials for X-ray-mediated neuronal control in the deep brain., International Journal of Molecular Sciences 25: 11365. https://doi.org/10.3390/ijms252111365
Shima, S., Mizutani, Y., Yoshimoto, J. et al. (2024) Uric acid and alterations of purine recycling disorders in Parkinson’s disease: a cross-sectional study. npj Parkinsons Dis. 10, 170. https://doi.org/10.1038/s41531-024-00785-0
Ohta, H., Nozawa, T., Nakano, T., Morimoto, Y. & Ishizuka, T. (2024) Nonlinear age-related differences in probabilistic learning in mice: A 5-armed bandit task study. Neurobiol. Aging 142, 8–16. https://doi.org/10.1016/j.neurobiolaging.2024.06.004
Olorocisimo, J. P., Ohta, Y., Regonia, P. R., Castillo, V. C. G., Yoshimoto, J., Takehara, H., Sasagawa, K., & Ohta, J. (2024). Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus. Journal of Neural Engineering, 21(4), 046022. https://doi.org/10.1088/1741-2552/ad5c03
Nagao, R., Mizutani, Y., Shima, S., Ueda, A., Ito, M., Yoshimoto, J., & Watanabe, H. (2024). Correlations between serotonin impairments and clinical indices in multiple system atrophy. European Journal of Neurology, 31(3). https://doi.org/10.1111/ene.16158
Tsuboi, D., Nagai, T., Yoshimoto, J., & Kaibuchi, K. (2024). Neuromodulator regulation and emotions: insights from the crosstalk of cell signaling. Frontiers in Molecular Neuroscience, 17. https://doi.org/10.3389/fnmol.2024.1376762
Kannon, T., Murashige, S., Nishioka, T., Amano, M., Funahashi, Y., Tsuboi, D., Yamahashi, Y., Nagai, T., Kaibuchi, K., & Yoshimoto, J. (2024). KANPHOS: Kinase-associated neural phospho-signaling database for data-driven research. Frontiers in Molecular Neuroscience, 17. https://doi.org/10.3389/fnmol.2024.1379089
Nomura, Y., Suzuki, T., Kunida, K., Uchida, H., Ito, R., Oshima, Y., Kito, M., Imai, Y., Kawai, S., Kozawa, K., Saito, K., Hata, T., Yoshimoto, J., Yoshikawa, T., & Yasuda, K. (2024). Analysis of Cytokine Profiles in Pediatric Myocarditis Multicenter Study. Pediatric Cardiology. https://doi.org/10.1007/s00246-024-03452-6
Yokotani, K., Abe, N., Yamamoto, T., Takamura, M., & Takahashi, H. (2024). Effect of pachinko parlour openings and closings on neighbourhood income-generating crimes in Japan: 6.5 years of observations. BMC Public Health 24, 1905. https://doi.org/10.1186/s12889-024-19373-1
Omori, N., Ishida, M., Takamura, M., Abe, S. & Nagai, A. (2024). Anemia-associated smaller brain volume and sex differences: a cross-sectional study of magnetic resonance imaging in brain health checkups. Front. Aging Neurosci., 16, 1444308. https://doi.org/10.3389/fnagi.2024.1444308
Li, W.-R., Nakano, T., Mizutani, K., Matsubara, T., Kawatani, M., Mukai, Y., Danjo, T., Ito, H., Aizawa, H., Yamanaka, A., Petersen, C. C. H., Yoshimoto, J. & Yamashita, T. (2023). Neural mechanisms underlying uninstructed orofacial movements during reward-based learning behaviors. Current Biology, 33(16), 3436-3451.e7. https://doi.org/10.1016/j.cub.2023.07.013
Mizutani, Y., Nawashiro, K., Ohdake, R., Tatebe, H., Shima, S., Ueda, A., Yoshimoto, J., Ito, M., Tokuda, T., Mutoh, T., & Watanabe, H. (2023). Enzymatic properties and clinical associations of serum alpha <scp>‐</scp> galactosidase A in Parkinson’s disease. Annals of Clinical and Translational Neurology, 10(9), 1662–1672. https://doi.org/10.1002/acn3.51856
Sri-iesaranusorn, P., Sadahiro, R., Murakami, S., Wada, S., Shimizu, K., Yoshida, T., Aoki, K., Uezono, Y., Matsuoka, H., Ikeda, K., & Yoshimoto, J. (2023). Data-driven categorization of postoperative delirium symptoms using unsupervised machine learning. Frontiers in Psychiatry, 14. https://doi.org/10.3389/fpsyt.2023.1205605
Bai, W., Yamashita, O., & Yoshimoto, J. (2023). Learning task-agnostic and interpretable subsequence-based representation of time series and its applications in fMRI analysis. Neural Networks, 163, 327–340. https://doi.org/10.1016/j.neunet.2023.03.038
Hieida, C., Yamamoto, T., Kubo, T., Yoshimoto, J., & Ikeda, K. (2023). Negative emotion recognition using multimodal physiological signals for advanced driver assistance systems. Artificial Life and Robotics, 28(2), 388–393. https://doi.org/10.1007/s10015-023-00858-y
Nakano, T., Takamura, M., Kato, T. A. & Kano, S. (2022). Editorial: The development of biomarkers in psychiatry. Frontiers Psychiatry 13, 1075993 https://doi.org/10.3389/fpsyt.2022.1075993
Yamahashi, Y., Lin, Y.-H., Mouri, A., Iwanaga, S., Kawashima, K., Tokumoto, Y., Watanabe, Y., Faruk, Md. O., Zhang, X., Tsuboi, D., Nakano, T., Saito, N., Nagai, T., Yamada, K. & Kaibuchi, K. (2022). Phosphoproteomic of the acetylcholine pathway enables discovery of the PKC-β-PIX-Rac1-PAK cascade as a stimulatory signal for aversive learning. Molecular Psychiatry, 27(8), 3479–3492. https://doi.org/10.1038/s41380-022-01643-2
Nakano, T., Rizwan, S. B., Myint, D. M. A., Gray, J., Mackay, S. M., Harris, P., Perk, C. G., Hyland, B. I., Empson, R., Tan, E. W., Dani, K. M., Reynolds, J. N. & Wickens, J. R. (2022). An On-Demand Drug Delivery System for Control of Epileptiform Seizures. Pharmaceutics, 14(2), 468. https://doi.org/10.3390/pharmaceutics14020468