Research papers:

19. Dalang, R.C.,  Nualart, D. and Pu, F.: Sharp upper bounds on hitting probabilities for the solution to the stochastic heat equation on the line. arXiv:2508.11859 (2025) Arxiv file 

18. Gu, Y. and Pu, F.: Spatial decorrelation of KPZ from narrow wedge. arXiv:2506.23065 (2025) Arxiv file 

17. Bhattacharjee, S. and Pu, F.: Macroscopic Hausdorff dimension of the level sets of the Airy processes. arXiv:2501.00772 (2025) Arxiv file 

16. Pu, F.: Ergodicity, CLT and asymptotic maximum of the Airy1 process. Bernoulli 31 (2025), no. 4, 2624–2648. Arxiv file 

15. Pu, F.: Lower bound on spatial asymptotic of parabolic Anderson model with narrow wedge initial condition. Stoch. Partial Differ. Equ. Anal. Comput. 13 (2025), no. 2, 1034–1050.Arxiv file 

14. Dalang, R. C. and  Pu, F.: Hitting with probability one for stochastic heat equations with additive noise.  J. Theoret. Probab. 37 (2024), no. 4, 3479–3495.. Arxiv file 

13. Li, Z. and Pu, F.: Gaussian fluctuation for spatial average of super-Brownian motion. Stoch. Anal. Appl.  41, no.4, 752--769 (2023) Arxiv file 

12. Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F.: Central limit theorems for spatial averages of the stochastic heat equation via Malliavin-Stein's method.  Stoch PDE: Anal Comp.  11, no.1, 122--176 (2023) Arxiv file

11. Nourdin, I. and Pu, F.: Gaussian fluctuation for Gaussian Wishart matrices of overall correlation.  Statist. Probab. Lett. Paper No. 109269, 11 pp.  (2022) Arxiv file

10. Pu, F.: Gaussian fluctuation for spatial average of parabolic Anderson model with Neumann/Dirichlet boundary conditions.  Tran. Amer. Math. Soc.  375, no. 4, 2481--2509 (2022) Arxiv file

9. Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F: Spatial ergodicity and central limit theorem for parabolic Anderson model with delta initial condition.  J. Funct. Anal.  282, no. 2, Paper No. 109290, 35 pp. (2022) Arxiv file 

8. Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F: Central limit theorems for parabolic stochastic partial differential equations.  Ann. Inst. H. Poincar\'e Probab. Statist.  58, No.2, 1052--1077 (2022) Arxiv file 

7. Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F: Spatial ergodicity for SPDEs via Poincar\'e-type inequalities.  Electron. J. Probab. 26, 1--37 (2021) Arxiv file  

6. Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F: A CLT for dependent random variables, with applications to infinitely-many interacting diffusion processes.  Proc. of the A.M.S.   149, no. 12, 5367--5384 (2021) Arxiv file 

5. Khoshnevisan, D., Nualart, D. and Pu, F.: Spatial stationarity, ergodicity and CLT for parabolic Anderson model with delta initial condition in dimension $d \geq 1$. SIAM J. Math. Anal. 53(2), 2084-2133 (2021) Arxiv file    

4. Dalang, R.C. and Pu, F.: Optimal lower bounds on hitting probabilities for stochastic heat equations in spatial dimension $k \geq 1$.   Electron. J. Probab. 25, no. 40, 31pp (2020) Arxiv file

3. Dalang, R.C. and Pu, F.: Optimal lower bounds on hitting probabilities for non-linear systems of stochastic fractional heat equations.  Stochastic Process. Appl. 131 , 359--393 (2021) Arxiv file

2. Dalang, R.C. and Pu, F.: On the density of the supremum of the solution to the linear stochastic heat equation. Stoch PDE: Anal Comp.  8, 461--508  (2020) Arxiv file

1. Li, Z.H. and Pu, F. : Strong solutions of jump-type stochastic equations. Electron. Commun. Probab. 17, no. 33, 13pp (2012)  Arxiv file