Publications are increasingly numbered by completion date. Unless otherwise indicated, a preprint version of all my articles is available on the arXiv.
(37) F. Di Plinio, I. Parissis, Maximal subspace averages, arXiv:2107.02109, submitted
(36) F. Di Plinio, A. W. Green, B. Wick, Bilinear Wavelet Representation of Calderón-Zygmund forms, arXiv:2106.05604, submitted
(35) F.DiPlinio,B.Wick,T.Williams, Wavelet representation of singular integral operators, arXiv:2009.01212 , submitted
(31) Singular integrals along lacunary directions in R^n (N. Accomazzo, I. Parissis) Adv. Math. 380 (2021), Paper No. 107580
(29) Directional square functions (N. Accomazzo, P. Hagelstein, I. Parissis, L. Roncal) to appear, Analysis&PDE arXiv:2004.06509
(28) Maximal directional operators along algebraic varieties (I. Parissis), Amer. J. Math, to appear arXiv:1807.08255
(26) On the maximal directional Hilbert transform in three dimensions (I. Parissis), to appear IMRN, arXiv:1712.02673
(24) Square functions for bi-Lipschitz maps and directional operators (S. Guo, C. Thiele and P. Zorin-Kranich) J. Funct. Anal. 275 (2018), no. 8, 2015–2058. arxiv:1706.07111
(22) A sharp estimate for the Hilbert transform along higher order lacunary directions (I. Parissis), Israel J. Math. 227 (2018), no. 1, 189–214 arxiv:1704.02918
(9) Logarithmic Lp bounds for maximal directional singular integrals in the plane (C. Demeter) J. Geom. Anal. 24 (2014), no. 1, 375–416. arXiv:1203.6624
(33) Banach-valued multilinear singular integrals with modulation invariance, (K.Li, H. Martikainen, E. Vuorinen) IMRN, onlinefirst at link, arXiv:1909.07236
(27) Endpoint sparse bounds for Walsh-Fourier multipliers of Marcinkiewicz type (W. Chen, A. Culiuc M. Lacey , Y. Ou), accepted in Rev. Mat. Iberoamericana, arXiv:1805.06060
(19) Positive sparse domination of variational Carleson operators (Y. Q. Do G. N. Uraltsev), Annali Scuola Norm. Sup. (Scienze) 18, no. 4, 1443–1458. arXiv:1612.03028
(17) Domination of multilinear singular integrals by positive sparse forms (A. Culiuc, Y. Ou) J. London Math. Soc. 98 (2018) no. (2) 369–392. arXiv:1603.05317
(16) A modulation invariant Carleson embedding theorem outside local L^2 (Y. Ou), J. d’Analyse Mathematique 135 (2018), no. 2, 675–711. arXiv:1510.06433
(14) Endpoint bounds for the bilinear Hilbert transform (C. Thiele), Trans. Amer. Math. Soc. 368 (2016), no. 6, 3931–3972. arXiv:1403.5978
(12) On weighted norm inequalities for the Carleson and Walsh-Carleson operators (A. Lerner), J. London Math. Soc. 90 (2014), no. 3, 654–674 arXiv:1312.0833
(11) Weak-Lp bounds for the Carleson and Walsh-Carleson operators, C. R. Math. Acad. Sci. Paris 352 (2014), no. 4, 327–331 arXiv:1312.0398
(10) Lacunary Fourier and Walsh-Fourier series near L^1 , Collect. Math. 65 (2014), no. 2, 219–232. arXiv:1304.3943
(8) Endpoint bounds for the Quartile Operator (C. Demeter), J. Fourier Anal. Appl. 19 (2013), no. 4, 836–856. arXiv:1206.3798
(34) A metric approach to sparse domination (J.M. Conde-Alonso, I. Parissis, M. N. Vempati), Ann. Mat. Pura Appl, onlinefirst at link, preprint arXiv:2009.00336
(32) Multilinear operator-valued Calderón-Zygmund theory (K.Li, H. Martikainen, E. Vuorinen), J. Funct. Analysis 279 (2020), no. 8, arXiv:1908.07233,
(30) Multilinear singular integrals on noncommutative L^p spaces (K.Li, H. Martikainen, E. Vuorinen), Mathematische Annalen, 78 (2020), no. 3-4, 1371–1414. arXiv:1905.02139
(25) A sparse estimate for multisublinear forms involving vector valued maximal functions (A. Culiuc, Y. Ou), Bruno Pini Math. Anal. Sem. (2018), 168–184 arxiv:1709.09647
(23) Sparse bounds for maximal rough singular integrals via the Fourier transform (T. Hytönen and K. Li), to appear in Ann. Inst. Fourier, arXiv:1706.09064
(20) A sparse domination principle for rough singular integrals (J.M. Conde-Alonso, A. Culiuc, Y. Ou), Analysis & PDE 10 (2017), no. 5, 1255–1284 arXiv:1612.09201
(18) Uniform sparse domination of singular integrals via dyadic shifts (A. Culiuc, Y. Ou), Math. Res. Lett. 25 (2018), no.1, 21–42 arXiv:1610.01958
(15) Banach-valued multilinear singular integrals (Y. Ou), Indiana Univ. Math. J. 67 (2018), no. 5, 1711–1763. arXiv:1506.05827
(21) The Navier-Stokes-Voigt Equations with Memory in 3D lacking instantaneous kinematic viscosity (A. Giorgini, V. Pata and R. Temam), J. Nonlinear Sci. 28 (2018), no. 2, 653–686 arXiv:1701.07845
(6) The 3-dimensional Oscillon Equation (G. S. Duane, R. Temam), Boll. Unione Mat. Ital.Ser. IX 5 (2012), no. 1, 19–54. arXiv:1307.1777
(5) Asymptotics of the Coleman-Gurtin model (M. D. Chekroun, N. E. Glatt-Holtz, V. Pata) Discrete Contin. Dyn. Syst.Ser. S 4 (2011), no. 2, 351–369. arXiv:1006.2579
(4) Time-dependent attractor for the oscillon equation (G. S. Duane, R. Temam), Discrete Contin. Dyn. Syst. 29 (2011), no. 1, 141–167. arXiv:1009.2529
(3) Robust exponential attractors for the strongly damped wave equation with memory. II(V. Pata), Russ. J. Math. Phys.16 (2009), 61–73. preprint
(2) Robust exponential attractors for the strongly damped wave equation with memory. I (V. Pata), Russ. J. Math. Phys.15 (2008), 301–315 preprint
(1) On the strongly damped wave equation with memory (V. Pata, S. Zelik), Indiana Univ. Math. J. 57 (2008), no. 2, 757–780. preprint
(13) Grisvard’s shift theorem near L∞ and Yudovich theory on polygonal domains (R. Temam), SIAM J. Math. Anal. 47 (2015), no. 1, 159–178. arXiv:1310.5444
(7) The Euler equations in planar nonsmooth convex domains (C. Bardos, R. Temam) J. Math. Anal. Appl. 407 (2013), no. 1 , 69–89. arXiv:1212.0036