[17] T. Miura, F. Rupp. Embeddedness and graphicality of the elastic flow for complete curves (2025). [arXiv]
[16] M. Röger, F. Rupp. Elastic bilayer membranes under confinement - Existence, regularity, and rigidity (2025). [arXiv]
[15] T. Miura, F. Rupp. A new energy method for shortening and straightening complete curves (2025). [arXiv]
[14] A. Dall'Acqua, M. Müller, F. Rupp, M. Schlierf. Dimension reduction for Willmore flows of tori: fixed conformal class and analysis of singularities (2025). [arXiv]
[13] F. Rupp, C. Scharrer, M. Schlierf. Gradient flow dynamics for cell membranes in the Canham-Helfrich model (2024). [arXiv]
[12] F. Rupp, C. Scharrer. Global regularity of integral 2-varifolds with square integrable mean curvature (2024). Accepted for publication in J. Math. Pures Appl. [arXiv]
[11] A. Dall'Acqua, G. Jankowiak, L. Langer, F. Rupp. Conservation, convergence, and computation for evolving heterogeneous elastic wires. SIAM J. Math. Anal. 56:4 (2024), 4494-4529. [arXiv] [journal]
[10] K. Brazda, M. Kružík, F. Rupp, U. Stefanelli. Curvature-dependent Eulerian interfaces in elastic solids. Philos. Trans. Roy. Soc. A. 381, (2263) (2023) . [arXiv] [journal]
[9] M. Müller, F. Rupp, C. Scharrer. Short closed geodesics and the Willmore energy (2023). Accepted for publication in J. Differential Geom. [arXiv]
[8] A. Dall'Acqua, L. Langer, F. Rupp. A dynamic approach to heterogeneous elastic wires. J. Differential Equations 392 (2024), 1-42. [arXiv] [journal]
[7] F. Rupp, C. Scharrer. Li–Yau inequalities for the Helfrich functional and applications. Calc. Var. Partial Differential Equations 62, 45 (2023). [arXiv] [journal]
[6] T. Miura, M. Müller, F. Rupp. Optimal thresholds for preserving embeddedness of elastic flows. Amer. J. Math. 147 (2025), no. 1, 33--80. [arXiv] [journal]
[5] F. Rupp. The Willmore flow with prescribed isoperimetric ratio. Comm. Partial Differential Equations 49:1-2 (2024), 148-184. [arXiv] [journal]
[4] M. Müller, F. Rupp. A Li-Yau inequality for the 1-dimensional Willmore energy. Adv. Calc. Var. 16 (2023), no. 2, 337–362. [arXiv] [journal]
[3] F. Rupp. The volume-preserving Willmore flow. Nonlinear Anal. 230 (2023), 113220. [arXiv] [journal]
[2] F. Rupp, A. Spener. Existence and convergence of the length-preserving elastic flow of clamped curves. J. Evol. Equ. 24, 59 (2024). [arXiv] [journal]
[1] F. Rupp. On the Lojasiewicz-Simon gradient inequality on submanifolds. J. Funct. Anal. 279 (2020), 108708. [arXiv] [journal]
[T] F. Rupp. Constrained gradient flows for Willmore-type functionals. PhD thesis (2022). [published version]