My research interests lie at the intersection of AI and society. I use machine learning and causal inference to improve decision-making in societally high-stakes settings, evaluate and mitigate data issues of validity and measurement error that arise in social data. Application areas of my work include social services, agriculture, healthcare, and AI policy.
Preprints
Batch-Adaptive Causal Annotations. Ezinne Nwankwo, Lauri Goldkind, and Angela Zhou. In Submission. (Preliminary version to appear at NeurIPS 2025 Women in Machine Learning Workshop, Workshop on ML x OR, and Reliable Machine Learning from Unreliable Data Workshop.)
Counterfactual Evaluation under Outcome Measurement Error. Ezinne Nwankwo, Amanda Coston. In Preparation. (2025).
Mapping AI Scholarship Across The Homeless Services Pipeline: A Scoping Review. Ezinne Nwankwo, Lauri Goldkind, Elizabeth B. Matthews, Angela Zhou. In Submission. (2025)
Bridging prediction and intervention problems in social systems. Lydia T Liu, Inioluwa Deborah Raji, Angela Zhou, Luke Guerdan, Jessica Hullman, Daniel Malinsky, Bryan Wilder, Simone Zhang, Hammaad Adam, Amanda Coston, Ben Laufer, Ezinne Nwankwo, Michael Zanger-Tishler, Eli Ben-Michael, Solon Barocas, Avi Feller, Marissa Gerchick, Talia Gillis, Shion Guha, Daniel Ho, Lily Hu, Kosuke Imai, Sayash Kapoor, Joshua Loftus, Razieh Nabi, Arvind Narayanan, Ben Recht, Juan Carlos Perdomo, Matthew Salganik, Mark Sendak, Alexander Tolbert, Berk Ustun, Suresh Venkatasubramanian, Angelina Wang, Ashia Wilson. Preprint. (2025).
Reduced-Rank Multiobjective Policy Learning and Optimization. Ezinne Nwankwo, Michael I Jordan, Angela Zhou. arXiv preprint arXiv:2404.18490. (2024).
A resource-constrained stochastic scheduling algorithm for homeless street outreach and gleaning edible food. Conor M Artman, Aditya Mate, Ezinne Nwankwo, Aliza Heching, Tsuyoshi Id´e, Jiˇr´ı Navr´atil, Karthikeyan Shanmugam, Wei Sun, Kush R Varshney, Lauri Goldkind, Gidi Kroch, Jaclyn Sawyer, Ian Watson. arXiv preprint arXiv:2403.10638. (2024).
Journal Publications
Poultry Diseases Diagnostics Models Using Deep Learning. Dina Machuve, Ezinne Nwankwo, Neema Mduma, Jimmy Mbelwa. Frontiers of Artificial Intelligence. (2022).
Measuring New Orleans Police Department’s Body Camera Compliance Rate. Ezinne Nwankwo, Thalia Orphee, and Elizabeth Yemane. Journal for Technology Science. (2017).
Workshops and Technical Reports
A Preliminary Study of Identifying Housing Outcomes from Casenotes Using Large Language Models. Ezinne Nwankwo, Lauri Goldkind, Angela Zhou. AAAI 2025 Workshop on AI Governance: Alignment, Morality, and Law. (2025).
Topic modeling approaches for understanding COVID-19 misinformation spread in sub-Saharan Africa. Ezinne Nwankwo, Chinasa Okolo, Cynthia Habonimana. Harvard University CRCS AI for social good workshop. (2020).
Africa’s Social Contract with AI. Ezinne Nwankwo, Belona Sonna. XRDS:Crossroads, The ACM Magazine for Students. 26.2 (2019): 44-48.
Interpreting AI and Its Place in Our Worlds. Christine T. Wolf, Ezinne Nwankwo. XRDS: Crossroads, The ACM Magazine for Students. 25.3 (2019): 8-9.
Datasets
Machine learning dataset for poultry diseases diagnostics-PCR annotated. Dina Machuve, Ezinne Nwankwo, Emmanuel Lyimo, Evarist Maguo, Charles Munisi. Zenodo.(2021).
Policy Reports
Exploring the Impact of AI on Black Americans: Considerations for the Congressional Black Caucus’s Policy Initiatives. Nina Dewi, Toft Djanegara, Daniel Zhang, Haifa Badi Uz Zaman, Caroline Meinhardt, Gelyn Watkins, Ezinne Nwankwo, Russell Wald, Rohini Kosoglu, Sanmi Koyejo, Michele Elam. (2023).