GKM actions on almost quaternionic manifolds,
O. Goertsches and E. Loiudice,
Preprint, arXiv:2408.09299
Para-Sasakian ϕ-symmetric spaces,
E. Loiudice,
To appear in Ann. Glob. Anal. Geom.
GKM actions on cohomogeneity one manifolds,
O. Goertsches, E. Loiudice, and G. Russo,
Forum Math. 35, No. 2, 391-407 (2023).
How to construct all metric f -K-contact manifolds,
O. Goertsches and E. Loiudice,
Adv. Geom. 21, No. 4, 591-598 (2021).
Metric f -contact manifolds satisfying the (κ, μ)-nullity condition,
A. Carriazo, L. M. Fernández, and E. Loiudice,
Mathematics (2020), 8, 891.
On the topology of metric f -K-contact manifolds,
O. Goertsches and E. Loiudice,
Monatsh. Math. 192, No. 2, 355-370 (2020).
Canonical fibrations of contact metric (κ, μ)-spaces,
E. Loiudice and A. Lotta,
Pac. J. Math. 300, No. 1, 39-63 (2019).
On the classification of contact metric (κ, μ)-spaces via tangent hyperquadric bundles,
E. Loiudice and A. Lotta,
Math. Nachr. 291, No. 11-12, 1851-1858 (2018).
On five dimensional Sasakian Lie algebras with trivial center,
E. Loiudice and A. Lotta,
Osaka J. Math. 55, No. 1, 39-49 (2018).
A dimensional restriction for a class of contact manifolds,
E. Loiudice,
Demonstr. Math. 50, 231-238 (2017).
Canonical fibrations of (κ, μ)-spaces and Sasakian Lie groups over symmetric spaces, [pdf]
PhD thesis, Università di Bari Aldo Moro (May 25, 2017)
Supervisor: Antonio Lotta
E-mail: eug.loiudice@gmail.com Phone: +49 3834 420 4636
Address: Walther-Rathenau-Str. 47, 17489 Greifswald (Raum: 5.05)