R2. Kim, B. J., Kim, Y.*, Kim, J. W.*, "Explainable Multimode Process Monitoring Framework Using Deep Autoencoding Gaussian Mixture Model and Kernel SHAP", IEEE Transactions on Industrial Informatics, Under revision.
R1. Oh, T. H., Kim, J. W., Lee, J. M.*, “Probability Density Function based Stochastic Model Predictive Control using Fokker-Planck Equation”, Automatica, Under revision.
26. Kim, Y., Doo, H., Shin, D., Lee, S. Y., Roh, Y., Park, S., Song, H., Jung. Y., Yoo. H. H., Han. S. S., Kim, J. W., Besenhard, M. O.*, Lee., Y. S.*, & Na, J.* (2025). Self-driving laboratories with artificial intelligence: An overview of process systems engineering perspective. Computers & Chemical Engineering, 109266.
25. Park, J., Jung, H., Kim, J. W.*, & Lee, J. M.* (2024). "Reinforcement Learning for Process Control: Review and Benchmark Problems", International Journal of Control, Automation, and Systems, 23(1), 1 - 40.
24. Jung, H., Kim, J. W.*, & Lee, J. M.* (2024). "Two-stage dynamic real-time optimization framework using parameter-dependent differential dynamic programming". Computers & Chemical Engineering, 192, 108896.
23. Lawrence, N. P., Tulsyan, A., Chachuat, B., Huang, B., Lee, J. M., Amjad, F., Damarla, S. K., Kim, J. W., Wang, K., Gopaluni, R. B.* (2024), “Machine learning for industrial sensing and control: A survey and practical perspective”, Chemical Engineering Practice, 145, 105841.
22. Bae, S., Oh, T.H., Kim, J. W., Kim, Y., Lee, J. M.* (2023), “Integrating path integral control with backstepping control to regulate stochastic system”, International Journal of Control, Automation, and Systems, 21, 2124-2138.
21. Park, B. J., Kim, J. W.*, Lee, J. M.* (2023), “Data-driven model predictive control design for offset-free tracking of nonlinear systems”, International Journal of Control, 96(6) 1408-1423.
20. Kim, J. W.*, Krausch, N., Aizpuru, J., Barz, T., Lucia, S., Neubauer, P., Cruz Bournazou, M. N. (2023), "Model predictive control and moving horizon estimation for adaptive optimal bolus feeding in high-throughput cultivation of E. coli", Computers & Chemical Engineering, 172, 108158.
19. Duong-Trung, N., Born, S., Kim, J. W., Schermeyer, M. T., Paulick, K., Martinez, E., Cruz-Bournazou, M. N., Werner, T., Scholz, R., Schmidt-Thieme, L., Neubauer, P.* (2022), “When Bioprocess Engineering Meets Machine Learning: A Survey of Bioprocess Systems from the Reproducibility and Automated Procedure Perspective”, Biochemical Engineering Journal, 190, 108764.
18. Kim, J. W., Oh, T. H., Son, S. H., Lee, J. M.* (2022), “Primal-dual differential dynamic programming: A model-based reinforcement learning for constrained dynamic optimization”, Computers & Chemical Engineering, 167, 108004.
17. Krausch, N., Kim, J.W., Barz, T., Lucia, S., Hans, S., Schiller, S., Neubauer, P., Cruz Bournazou, M.N.*, (2022). "High-throughput screening of optimal process conditions using model predictive control", Biotechnology and Bioengineering, 119(12), 3584-3595.
16. Oh, T. H., Kim, J. W., Son, S. H., Jeong D. H.*, Lee, J. M.* (2022), “Multi-strategy control to extend the feasibility region for robust model predictive control”, Journal of Process Control, 116, 25-33.
15. Son, S. H., Kim, J. W., Oh, T. H., Jeong D. H., Lee, J. M.* (2022), “Learning of model-plant mismatch map via neural network modeling and its application to offset-free model predictive control”, Journal of Process Control, 115, 112-122.
14. Oh, T. H., Park, H. M., Kim, J. W., Lee, J. M.* (2022), “Integration of Reinforcement Learning and Predictive Control to Optimize Semi-batch Bioreactor”, AIChE Journal, e17658.
13. Kim, Y.*, Kim, J. W. (2022), “Safe model-based reinforcement learning for nonlinear optimal control with state and input constraints”, AIChE Journal, e17601.
12. Park, B. J., Kim, J. W.*, Lee, J. M.* (2021), “Data-driven offset-free multilinear model predictive control using constrained differential dynamic programming”, Journal of Process Control, 107, 1-16.
11. Kim, J. W., Park, B. J., Oh, T. H., Lee, J. M.* (2021), “Model-based reinforcement learning and predictive control for two-stage optimal control of fed-batch bioreactor”, Computers & Chemical Engineering, 154, 107465.
10. Oh, T. H., Kim, J. W., Son, S. H.., Kim, H., Lee, K., Lee, J. M.* (2021), “Automatic Control of Simulated Moving Bed Process with Deep Q-Network”, Journal of Chromatography A, 462073.
9. Park, J., Kim, J. W., Kim, H., Yoon, W. (2021), “An electrochemical hydrogen peroxide sensor for applications in nuclear industry”, Nuclear Engineering and Technology, 53(1), 142-147.
8. Yoo, H., Kim, B., Kim, J. W., Lee, J. H.* (2021), “Reinforcement learning based optimal control of batch processes using Monte-Carlo deep deterministic policy gradient with phase segmentation”, Computers & Chemical Engineering, 144, 107133.
7. Kim, J. W., Oh, T. H., Son, S. H., Jeong D. H., Lee, J. M.* (2020), “Convergence analysis of the model-based deep reinforcement learning for optimal control of nonlinear control-affine system”, Automatica, 122, 109222.
6. Son, S. H., Oh, T. H., Kim, J. W., Lee, J. M.* (2020), “Move blocked model predictive control with improved optimality using semi-explicit approach for applying time-varying blocking structure”, Journal of Process Control, 92, 50-61.
5. Kim, J. W., Park, B. J., Yoo, H., Oh, T. H., Lee, J. H., Lee, J. M.* (2020), “A model-based deep reinforcement learning method applied to finite-horizon optimal control of nonlinear control-affine system”, Journal of Process Control, 87, 166-178.
4. Son, S. H., Park, B. J., Oh, T. H., Kim, J. W., Lee, J. M.* (2020), “Move blocked model predictive control with guaranteed stability and improved optimality using linear interpolation of base sequences”, International Journal of Control, 1-13.
3. Kim, J. W., Choi, G. B., Lee, J. M.* (2018), “A POMDP framework for integrated scheduling of infrastructure maintenance and inspection”, Computers & Chemical Engineering, 112, 239-252.
2. Choi, G. B., Kim, J. W., Suh, J. C., Jang, K. H., Lee, J. M.* (2017), “A prioritization method for replacement of water mains using rank aggregation”, Korean Journal of Chemical Engineering, 34(10), 2584-2590.
1. Kim, J. W., Choi, G. B., Suh, J. C., Lee, J. M.* (2015), “Dynamic optimization of maintenance and improvement planning for water main system: Periodic replacement approach”, Korean Journal of Chemical Engineering, 33(1), 25-32.