This project is funded by European Research Council (ERC) under H2020-EU.1.1. with grant agreement ID of 789116.
The start date is 1 January 2019 and the end date is 31 December 2024.
The PI of this project is Prof. Peter G. Kazansky in Optoelectronics Research Centre (ORC) at the University of Southampton, UK.
Ultrafast laser material processing is approaching its limits in terms of ability to produce innovative materials with compositional and structural consistency. The main idea of this project is to remove barriers to product development and go beyond state-of-the-art by applying tailored and few-cycle laser pulses (FCLPs) for engineering of materials.
In this project I will investigate the interaction between intense ultra-short light pulses and matter at or below the wavelength scale reaching states of matter found only deep planetary conditions. A key goal of the project is to exploit these extreme conditions for synthesising unique material phases with on-demand optical and electronic properties, and progress photonic devices with utilizing FCLP advantages: control over the bond scissoring density; efficient and highly localized energy deposition; seeding of self-organized nanostructures; manipulation of spatio-temporal coupling.
Currently, a key limitation is plasma scattering that diminishes the performance of engineered materials. The question I will address is whether control of ultra-short pulses can lead to ways around this limitation. The control of self-organization process will revolutionize the field of data storage by achieving record high 100 TB/cm^3 densities, high writing speed and practically unlimited lifetime. I will radically improve the performance of printed flat optics with perfected nanostructures engineered from nano- to macro-scale and capable of replacing conventional optics significantly advancing photonic devices used in high-resolution microscopy, consumer electronics, and high-power laser applications. I envisage obtaining exotic material phases such as metallic phases of silicon and tailored metallic nanoparticles in silicate glass. Hence this project will push the frontiers of laser material processing to unprecedented precision and will develop novel family of devices that will feed into the future of optics, electronics and computing.
[1] Zhang, B., Tan, D., Liu, X., Tong, L., Kazansky, P. G., & Qiu, J. (2019). Self‐Organized Periodic Crystallization in Unconventional Glass Created by an Ultrafast Laser for Optical Attenuation in the Broadband Near‐Infrared Region. Advanced Optical Materials, 7(20), 1900593. pdf
[2] Sakakura, M., Lei, Y., Wang, L., Yu, Y. H., & Kazansky, P. G. (2020). Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass. Light: Science & Applications, 9(1), 1-10. pdf [Highlight]
[3] Lopez-Quintas, I., Holgado, W., Drevinskas, R., Kazansky, P. G., Sola, Í. J., & Alonso, B. (2020). Optical vortex production mediated by azimuthal index of radial polarization. Journal of Optics, 22(9), 095402. pdf
[4] Bhupathi, S., Wang, S., Abutoama, M., Balin, I., Wang, L., Kazansky, P. G., ... & Abdulhalim, I. (2020). Femtosecond Laser-Induced Vanadium Oxide Metamaterial Nanostructures and the Study of Optical Response by Experiments and Numerical Simulations. ACS Applied Materials & Interfaces, 12(37), 41905-41918. pdf
[5] Alonso, B., Lopez-Quintas, I., Holgado, W., Drevinskas, R., Kazansky, P. G., Hernández-García, C., & Sola, Í. J. (2020). Complete spatiotemporal and polarization characterization of ultrafast vector beams. Communications Physics, 3(1), 1-10. pdf
[6] Zhang, B., Wang, Z., Tan, D., Liu, X., Xu, B., Tong, L., ... & Qiu, J. (2021). Ultrafast Laser Inducing Continuous Periodic Crystallization in the Glass Activated via Laser‐Prepared Crystallite‐Seeds. Advanced Optical Materials, 9(8), 2001962. pdf
[7] Lei, Y., Sakakura, M., Wang, L., Yu, Y., Wang, H., Shayeganrad, G., & Kazansky, P. G. (2021) High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement. Optica, 8(11), 1365-1371. pdf [Highlight]
[8] Wang, H., Lei, Y., Wang, L., Sakakura, M., Yu, Y., Shayeganrad, G., & Kazansky, P. G. (2022) 100-Layer Error-Free 5D Optical Data Storage by Ultrafast Laser Nanostructuring in Glass. Laser Photonics & Reviews, 16, 2100563. pdf
[9] Goldberger, D., Barolak, J., Bevis, C. S., Ivanic, B., Schmidt, D., Lei, Y., Kazansky, P. G., ... & Adams, D. E. (2022) Single-pulse, reference-free, spatiospectral measurement of ultrashort pulse-beams. Optica, 9(8): 894-902.
[11] Lei, Y., Wang, H., Shayeganrad, G., & Kazansky, P. G. (2022) Ultrafast laser nanostructuring in transparent materials for beam shaping and data storage [Invited]. Optical Materials Express, 12(9), 3327-3355.
[12] Barber, M. J., Shardlow, P. C., Lei, Y., Kazansky, P. G., & Clarkson, W. A. (2022). Actively Q switched radially polarized Ho: YAG laser with an intra-cavity laser-written S-waveplate. Optics Letters, 47(17), 4508-4511.
[13] Shayeganrad, G., Chang, X., Wang, H., Deng, C., Lei, Y., & Kazansky, P. G. (2022). High damage threshold birefringent elements produced by ultrafast laser nanostructuring in silica glass. Optics Express, 30(22), 41002-41011.
[14] Chen, C., Xu, C., Riazi, A., Zhu, E. Y., Greenwood, A. C., Gladyshev, A. V., Kazansky, P. G., ... & Qian, L. (2022). Telecom-band hyperentangled photon pairs from a fiber-based source. Physical Review A, 105(4), 043702.
[15] Lei, Y., Wang, H., Skuja, L., Kühn, B., Franz, B., Svirko, Y., & Kazansky, P. G., (2023). Ultrafast Laser Writing in Different Types of Silica Glass. Laser & Photonics Reviews, 2200978
[16] Lei, Y., Shayeganrad, G., Wang, H., Sakakura, M., Yu, Y., Wang, L., Kliukin D., Skuja, L., Svirko, Y., & Kazansky, P. G., (2023). Efficient ultrafast laser writing with elliptical polarization. Light: Science & Applications 12 (1), 74
[17] Wang, Z., Zhang, B., Wang, Z., Zhang, J., Kazansky, P. G., Tan, D., & Qiu, J., (2023). 3d imprinting of Voxel‐Level Structural Colors in Lithium Niobate Crystal. Advanced Materials, 2303256
[18] Zalesskaia, I., Lei, Y., Kazansky, P. G., Wondraczek, K., Gumenyuk, R., & Filippov, V., (2024). Double-clad ytterbium-doped tapered fiber with circular birefringence as a gain medium for structured light. Optics Letters 49 (2), 270-273
[19] Lei, Y., Wang, H., Shayeganrad, G. Svirko, Y., & Kazansky, P. G., (2024). Controlling ultrafast laser writing in silica glass by pulse temporal contrast. Optics Letters 49 (9), 2385-2388
[20] Wang, H., Lei, Y., Shayeganrad, G., Svirko, Y., & Kazansky, P. G., (2024). Increasing Efficiency of Ultrafast Laser Writing Via Nonlocality of Light‐Matter Interaction. Laser & Photonics Reviews 18 (8), 2301143
[21] Hakobyan, V., Singh, K., Lei, Y., Kazansky, P., Coursault, D., Forbes, A., & Brasselet, E., (2024). Single-stage spin-orbit Laguerre-Gaussian modal beam shaping from silica optics. Physical Review Applied 21 (6), 064003
[22] Yeh, L., Ivanov, I. E., Chandler, T., Byrum, J. R., Chhun, B. B., Guo, S., Foltz, C., Hashemi, E., Perez-Bermejo, J. A., Wang, H., Yu, Y., Kazansky, P. G., Conklin, B. R., Han, M. H., & Mehta, S. B., (2024). Permittivity tensor imaging: modular label-free imaging of 3D dry mass and 3D orientation at high resolution. Nature Methods 21 (7), 1257-1274
[23] Barinova, S., Bhupathi, S., Kazansky, P. G., Long, Y., & Abdulhalim, I., (2024). Smart window based on integration of nanoporous microparticles in liquid crystal composite with metamaterial nanostructured VO2 film. Journal of Photonics for Energy 14 (4), 048001-048001
[24] Schmidt, D. D., Pablos-Marín, J. M., Clarke, C., Barolak, J., Westlake, N., Heras, A., Serrano, J., Shevtsov, S., Kazansky, P., Adams, D., Hernández-García, C., & Durfee, C. G., (2025). Self-interfering high harmonic beam arrays driven by Hermite-Gaussian beams. arXiv preprint arXiv:2501.09507
[25] Yu, L., Shevtsov, S., Singh, H. J., Kazansky, P. G., & Caglayan, H., (2025). Multifunctional meta-optic azimuthal shear interferometer. arXiv preprint arXiv:2502.05569
[1] Lei, Y., Sakakura, M., Wang, L., Yu, Y., Wang, H., & Kazansky, P. G. (2019, May). Low-loss geometrical phase elements by ultrafast laser writing in silica glass. In CLEO: Science and Innovations (pp. STh1H-1). Optical Society of America. pdf [Invited talk]
[2] Sakakura, M., Lei, Y., Wang, L., Yu, Y., & Kazansky, P. G. (2019, June). Low-loss geometric phase elements by femtosecond laser writing in silica glass. In the European Conference on Lasers and Electro-Optics (p. cm_5_3). Optical Society of America. pdf [Invited talk]
[3] Kazansky, P. G. (2019, September). The Science and Art of Ultrafast Laser Writing. 15th International Conference on Laser Ablation (COLA). Optical Society of America. pdf [Plenary talk]
[4] Kazansky, P. G., Sakakura, M., Wang, L., Lei, Y., & Yu, Y. (2019, November). Discovering new properties and applications of ultrafast laser writing in transparent materials. The 12th International Photonics and OptoElectronics Meetings (POEM). Optical Society of America. pdf [Invited talk]
[5] Lei, Y., Sakakura, M., Wang, L., Yu, Y., Wang, H., & Kazansky, P. G. (2020, May). Towards the smallest anisotropic structures by ultrafast laser writing in silica glass. In CLEO: Science and Innovations (pp. STh1H-1). Optical Society of America. pdf
[6] Kazansky, P., Lei, Y., Wang, L., Yu, Y., Wang, H., & Sarao, B. (2020). Virtually eternal 5D data storage in quartz glass. In ASCEND 2020 (p. 4044). pdf
[7] Wang, H., Lei, Y., Wang, L., Sakakura, M., Yu, Y., Chang, X., ... & Kazansky, P. G. (2021, May). 5D optical data storage with 100% readout accuracy in silica glass. In CLEO: Science and Innovations (pp. SW3H-3). Optical Society of America. pdf [Invited talk]
[8] Lei, Y., Wang, H., Shayeganrad, G., & Kazansky, P. G. (2021, May). Polarization controlled femtosecond laser induced birefringence in isotropic crystals. In CLEO: Science and Innovations (pp. SM3B-7). Optical Society of America. pdf
[9] Wang, H., Lei, Y., Chang, X., Deng, C., Shayeganrad, G., & Kazansky, P. G. (2021, May). Towards 5D Optical Data Storage with High Writing Speed. In the European Conference on Lasers and Electro-Optics, Optical Society of America. pdf
[10] Chang, X., Lei, Y., Wang, H., Shayeganrad, G., Deng, C., & Kazansky, P. G. (2021, May). High Damage Threshold Ultrafast Laser Nanostructuring in Silica Glass. In the European Conference on Lasers and Electro-Optics, Optical Society of America. pdf
[11] Jefferson-Brain T. L., Lei, Y., Kazansky, P. G, & Clarkson W. A. (2021, May). Generation of a Radially Polarised Beam in a Solid-State Laser Using an Intracavity Spatially Variant Waveplate. In the European Conference on Lasers and Electro-Optics, Optical Society of America. pdf
[12] Kazansky, P. G, Lei, Y., Wang, H., Shayeganrad, G., Deng C., (2021, June). Towards real world applications of ultrafast laser nanostructuring in transparent materials. The 22nd International Symposium on Laser Precision Microfabrication, Japan Laser Processing Society. pdf [Invited talk]
[13] Lei, Y., Shayeganrad, G., Wang, H., Deng, C., & Kazansky, P. G. (2022, May). Towards efficient nanostructuring of silica glass by elliptically polarized ultrafast laser pulses. In CLEO: Science and Innovations (pp. SF3L-4). Optica Publishing Group.
[14] Schmidt, D., Goldberger, D., De Las Heras, A., Hernández-García, C., Lei, Y., Kazansky, P., ... & Durfee, C. (2022, May). Multiplexed broadband ptychography characterization of complex spatial and spectral EUV beams from high harmonic generation. In CLEO: Science and Innovations (pp. SW4F-2). Optica Publishing Group.
[15] Yeh, L., Ivanov, I. E., Byrum, J. R., Chhun, B. B., Guo, S., Hashemi, E., Perez-Bermejo, J. A., Wang, H., Kazansky, P. G., Conklin, B. R., Han, M., & Mehta, S. B., (2022). Mapping intrinsic density and anisotropy in biological specimens with uniaxial permittivity tensor imaging (uPTI). Label-free Biomedical Imaging and Sensing, PC119720Y
[16] Goldberger, D., Barolak, J., Bevis, C. S., Ivanic, B., Schmidt, D., Lei, Y., Kazansky, P. G., Mancini, G. F., Durfee, C. G., & Adams, D. E., (2022). Single-shot polarization sensitive spatiospectral characterization of ultrafast pulse-beams. Computational Optical Sensing and Imaging, CW4B. 6
[17] Schmidt, D., Goldberger, D., Heras, A., Hernández-García, C., Lei, Y., Kazansky, P. G., Adams, D., & Durfee C., (2022). Using multiplexed broadband ptychography in characterizing EUV light from high harmonic generation. Computational Optical Sensing and Imaging, CF1D. 3
[18] Zalesskaia, I., Motorin, E., Ustimchik, V. Lindner, F., Reichel, V., Wondraczek, K., Lei, Y., Kazansky, P. G., Gumenyuk, R., & Filippov, V. (2023). Radially polarized picosecond MOPA system based on double-clad ytterbium-doped spun tapered fiber with ring-shaped active core. Fiber Lasers XX: Technology and Systems 12400, 151-154
[19] Barber, M. J., Shardlow, P. C., Lei, Y., Kazansky, P. G., & Clarkson, W., (2023). Generation of actively Q-switched pulses with radial polarization using a laser-written S-waveplate in a Ho: YAG laser. Solid State Lasers XXXII: Technology and Devices.
[20] Schmidt, D., Goldberger, D., Heras, A., Hernández-García, C., Lei, Y., Kazansky, P. G., Adams, D., & Durfee C., (2023). Investigation of high harmonic generation through multiplexed broadband ptychography. Nonlinear Frequency Generation and Conversion: Materials and Devices XXII
[21] Wang, H., Lei, Y., Deng, C., Shayeganrad, G., & Kazansky, P. G., (2023). Anomalously efficient high-speed ultrafast laser nanostructuring in silica glass. Laser-based Micro-and Nanoprocessing XVII 12409, 34-36
[22] Greenwood, A. C., Shahaj, A., Chen, C., Kirby, B. T., Gladyshev, A. V., Kazansky, P. G., & Qian, L., (2023). Towards the Generation of Photon Pairs at 780 and 1560 nm in Periodically-Poled Silica Fiber. CLEO: Science and Innovations, JTu2A. 93
[23] Wang, H., Lei, Y., Shayeganrad, G., & Kazansky, P. G., (2023). Controlling ultrafast laser writing with pulse temporal contrast. CLEO: Science and Innovations, STh1N. 2
[24] Lei, Y., Wang, H., Skuja, L., Kühn, B., Franz, B., Svirko, Y., & Kazansky, P. G., (2023). Ultrafast laser writing in different grades of silica glass. CLEO: Science and Innovations, STh1N. 4
[25] Zalesskaia, I., Motorin, E., Ustimchik, V., Lindner, F., Reichel, V., Wondraczek, K., Lei, Y., Kazansky, P. G., Gumenyuk, R., & Filippov, V., (2023). Radially polarized picosecond MOPA system based on double-clad ytterbium-doped spun tapered fiber with ring-shaped active core. CLEO/Europe-EQEC
[26] Lei, Y., Kazansky, P., & Shribak, M., (2023). Birefringent elements for optical microscopy by ultrafast laser writing. CLEO/Europe-EQEC
[27] Wang, H., Lei, Y., Shayeganrad, G., & Kazansky, P. G., (2023). Ultrafast laser writing with pulse temporal contrast control. The European Conference on Lasers and Electro-Optics, cm_4_3
[28] Schmidt, D. D., Westlake, N., Heras, A., Pablos-Marín, J. M., Serrano, J., Hernández-García, C., Lei, Y., Kazansky, P., Adams, D., & Durfee, C., (2023). Self-interference of high harmonic beams driven by Hermite Gaussian beams. Frontiers in Optics, FTh3C. 3
[29] Pablos-Marín, J. M., Schmidt, D. D., Heras, A., Westlake. N., Serrano, J., Lei, Y., Kazansky, P., Adams, D., Durfee, C., & Hernández-García, C., (2024). Integrating artificial intelligence into the simulation of structured laser-driven high harmonic generation. EPJ Web of Conferences 309, 15003
[30] Shahaj, A., Greenwood, A., Russett, J., Chen, C., Gladyshev, A. V., Kazansky, P. G., & Qian, L., (2024). Pulsed-Diode-Pumped, Fiber-Based Polarization-Entangled Photon Source. CLEO: Applications and Technology, ATh4G. 6
[31] Kazansky, P. G., Shevtsov, S., & Wang, H., (2024). Polarization beam shaping by ultrafast laser nanostructuring of glass for high power laser applications. Laser-Induced Damage in Optical Materials, PC131900M