Publications
Publications
Balakrishnan, N. & Castilla, E. (2025). Statistical Modeling and Robust Inference for One-shot Devices, Academic Press, Elsevier.
ISBN-10 : 0443141533
ISBN-13 : 978-0443141539
R codes are available here.
2025
Kharazmi, O., Castilla, E. & Yalcin, F. (2025). On Jensen-phi-divergence measure: applications to logistic regression model and image processing. Computational and Applied Mathematics.
Castilla (2025). Parametric estimation and robust inference for current status data with Lindley lifetimes. Communications in Statistics-Simulation and Computation.
Balakrishnan, N. & Castilla, E. (2025). Robust inference and model selection for data from one-shot devices under cyclic accelerated life-tests with an application to a test of CSP solder joints. Journal of Risk and Reliability.
2024
Castilla, E. (2024). A new robust approach for the polytomous logistic regression model based on Rényi's pseudodistances. Biometrics. 80 (4).
Castilla, E. (2024). A new estimation approach based on phi-divergence measures for one-shot device accelerated life testing. Quality and Reliability Engineering International. 40, pp. 2048–2066.
Balakrishnan, N. & Castilla, E. (2024). Robust inference for destructive one-shot device test data under Weibull lifetimes and competing risks. Journal of Computational and Applied Mathematics, 437, 115452.
2023
Balakrishnan, N. & Castilla, E. (2023). Robust estimation based on one-shot device test data under log-normal lifetimes. Statistics. 57(5), pp. 1061-1086.
Castilla, E. (2023). Robust Circular Logistic Regression model and its application to Life and Social Sciences. Revista Colombiana de Estadística, 46(1), pp. 45-62.
Castilla, E. & Ghosh, A. (2023). Robust Minimum Divergence Estimation for the Multinomial Circular Logistic Regression Model. Entropy. 25(10), 1422.
Balakrishnan, N., Castilla, E., Jaenada M. & Pardo, L. (2023) Robust inference for non-destructive one-shot device testing under step-stress model with exponential lifetimes. Quality and Reliability Engineering International. 39(4), pp. 1192-1222.
Balakrishnan, N., Castilla, E., Martín N. & Pardo, L. (2023). Power divergence approach for one-shot device testing under competing risks. Journal of Computational and Applied Mathematics. 419, 114676.
2022
Castilla, E. & Chocano, P. J. (2022). A new robust approach for multinomial logistic regression with complex design model. IEEE transactions on Information Theory, 86(11), pp. 7379-7395
Balakrishnan, N. & Castilla, E. (2022) EM-based likelihood inference for one-shot device test data under log-normal lifetimes and the optimal design of a CSALT plan. Quality and Reliability Engineering International. 38 (2), pp. 780-799.
Castilla, E. & Zografos, K. (2022) On distance-type Gaussian estimation. Journal of Multivariate Analysis. 188, 104831
Castilla, E. (2022). Robust estimation of the spherical normal distribution. Mathematica Applicanda, 50, pp. 43-63.
Balakrishnan, N., Castilla, E. & Ling, M.H. (2022) Optimal designs of Constant-Stress Accelerated Life-Tests for one-shot devices with model misspecification analysis. Quality and Reliability Engineering International. 38 (2), pp. 989-1012.
Castilla, E., Jaenada, M. & Pardo, L. (2022). Estimation and testing on independent not identically distributed observations based on Rènyi’s pseudodistances. IEEE transactions on Information Theory, 68(7), pp. 4588-4609.
Castilla, E., Jaenada, M., Martín, N. & Pardo, L. (2022) Robust approach for comparing two dependent normal populations through Wald-type tests based on Rényi's pseudodistance estimators. Statistics and Computing, 32:100.
2021
Balakrishnan, N., Castilla, E., Martín N. & Pardo, L. (2021) Divergence-based robust inference under proportional hazards model for one-shot device life-test. IEEE transactions on Reliability. 70(4), pp. 1355-1367
Castilla, E., Martín, N. & Pardo, L. (2021). Testing linear hypotheses in Logistic Regression Analysis with complex sample survey data based on phi-divergence measures. Communications in Statistics-Theory and Methods, 50(22), pp. 5228-5247.
Castilla, E., Martín, N., Pardo, L. & Zografos, K. (2021). Composite likelihood methods: Rao-type tests based on composite minimum density power divergence estimator. Statistical Papers, 62, pp. 1003–1041.
2020
Castilla, E., Ghosh, A., Martín, N. & Pardo, L. (2020) Robust semiparametric inference for polytomous logistic regression with complex survey design. Advances in Data Analysis and Classification, 15, pp. 701-734.
Castilla, E., Martín N., Muñoz S. & Pardo, L. (2020). Robust Wald-type tests based on Minimum Rényi Pseudodistance Estimators for the Multiple Regression Model. Journal of Statistical Computation and Simulation, 90(14), pp. 2655-2680.
Balakrishnan, N., Castilla, E., Martín N. & Pardo, L. (2020). Robust inference for one-shot device testing data under exponential lifetime model with multiple stresses. Quality and Reliability Engineering International, 36, pp. 1916-1930.
Castilla, E., Martín, N., Pardo, L. & Zografos, K. (2020). Model Selection in a composite likelihood framework based on density power divergence. Entropy, 22(3), 270.
2019
Balakrishnan, N., Castilla, E., Martín N. & Pardo, L. (2019). Robust inference for one-shot device testing data under Weibull lifetime model. IEEE transactions on Reliability, 69 (3), pp. 937-953.
Balakrishnan, N., Castilla, E., Martín N. & Pardo, L. (2019). Robust estimators for one-shot device testing data under gamma lifetime model with an application to a tumor toxicological data. Metrika, 82(8), pp. 991–1019.
Balakrishnan, N., Castilla, E., Martín N. & Pardo, L. (2019). Robust estimators and test-statistics for one-shot device testing under the exponential distribution. IEEE trans. on Information Theory, 65(5), pp 3080-3096.
Castilla, E., Ghosh, A., Martín, N. & Pardo, L. (2019). New statistical robust procedures for polytomous logistic regression models. Biometrics, 74(4), pp 1282-1291.
2018
Castilla, E., Martín, N., Pardo, L. & Zografos, K. (2018). Composite likelihood methods based on minimum density power divergence estimator. Entropy , 20(1), 18.
Castilla, E., Martin, N. & Pardo, L. (2018). Pseudo minimum phi-divergence estimator for the multinomial logistic regression model with complex sample design. AStA Advances in Statistical Anaysis., 102(3), pp 381-411.
Castilla, E. & Chocano, P. J. (2023). On the choice of the optimal tuning parameter in robust one-shot device testing analysis. Balakrishnan, Gil, Martín, Morales and Pardo (eds.). Trends in Mathematical, Information and Data Sciences. Studies in Systems, Decision and Control. vol 445. Springer, Cham, pp. 169-180.
Balakrishnan, N., Castilla, E. & Pardo, L. (2021). Robust statistical inference for one-shot devices based on density power divergences: An overview. In Arnold, B.C, Balakrishnan, N. and Coelho, C. (eds) Contributions to Statistical Distribution Theory and Inference. Festschrift in Honor of C. R. Rao on the Occasion of His 100th Birthday. Springer, New York.
Castilla, E., Martin, N. & Pardo, L. (2018). A Logistic Regression Analysis approach for sample survey data based on phi-divergence measures. In: Gil E., Gil E., Gil J., Gil M. (eds) The Mathematics of the Uncertain. Studies in Systems, Decision and Control, vol 142. Springer, Cham, pp 465-474.
Castilla, E. & Chocano, P. J. (2023). Una breve introducción al método de Monte Carlo. Gaceta de la Real Sociedad Matemática Española, 26(1), pp. 87-108.
Castilla, E. (2022). Thesis Abstract: Robust statistical inference for one-shot devices based on divergences. Journal & Proceedings of the Royal Society of NSW, 155(1), pp 114-115.
Castilla, E. (2022). Thesis Abstract: Inferencia estadística robusta para dispositivos de un solo uso. Boletín de Estadística e Investigación Operativa, 38(1).
Chocano, P. J. & Castilla, E. (2021). Estadística multivariante aplicada al análisis y predicción de partidos de fútbol en las principales ligas europeas. Pensamiento Matemático, 11(2), pp. 021–030.
Castilla, E. & Chocano, P. J. (2021). Enseñanza del Software Estadístico R a alumnos de Matemáticas. Pensamiento Matemático, 11(1), pp. 057-068.