Application of the 2D diamond scheme to predict the macroscopic thermal conductivity of a three-phase composite with local anisotropy directions, E. H. Quenjel and P. Perré, Computers and Mathematics with Applications, 163 (1), 226-233, 2024.
Discrete duality finite volume scheme for a generalized Joule heating problem, M. Bahari, E. H. Quenjel, M. Rhoudaf, Calcolo, 61(14), 2024.
Thermal conductivity of the cell wall of wood predicted by inverse analysis of 3D homogenization, B. Mazian, E. H. Quenjel and P. Perré, International Journal of Heat and Mass Transfer, 217, 124700, 2023.
Nodal discrete duality numerical scheme for nonlinear diffusion problemson general meshes, B. Andreianov and E. H. Quenjel, IMA Journal of Numerical Analysis 44(3), 1597–1643, 2023.
Weakly monotone finite volume scheme for parabolic equations in strongly anisotropic media, M. Aberrah, E. H. Quenjel, P. Perré and M. Rhoudaf, Journal of Applied Mathematics and Computing, 69 (1), 3289-3316, 2023.
A 3D face interpolated discretisation method for simulating highly anisotropic diffusive processes on general hexahedral meshes, E. H. Quenjel, P. Perré and I. W. Turner, Applied Numerical Mathematics, 192(3), 280-296, 2023.
Weighted positive nonlinear finite volume method for dominated anisotropic diffusive equations, C. Guichard and E. H. Quenjel, Advances in Computational Mathematics, 48(6), 81, 2022.
On Numerical Approximation of Diffusion Problems Governed by Variable-Exponent Nonlinear Elliptic Operators, B. Andreianov and E. H. Quenjel, Vietnam Journal of Mathematics, 51 (1), 213-243, 2022.
Node-Diamond approximation of heterogeneous and anisotropic diffusion systems on arbitrary two-dimensional grids, E. H. Quenjel and A. Beljadid, Mathematics and Computers in Simulation, 204 (08), 450-472, 2022.
Computation of the effective thermal conductivity from 3D real morphologies of wood, Heat and Mass Transfer, E. H Quenjel and P. Perré, Heat and Mass Transfer, 58(12), 2195-2206, 2022.
Positive Scharfetter-Gummel finite volume method for convection-diffusion equations on polygonal meshes, E. H QUNEJEL, Applied Mathematics and Computation, 425 (46):127071, 2022.
Analysis of Accurate and Stable Nonlinear Finite Volume Scheme for AnisotropicDiffusion Equations with Drift on Simplicial Meshes, E. H. Quenjel, Journal of Scientific Computing, 88 (76), 2021.
Total-velocity-based finite volume discretization of two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure, K. Brenner, J. Droniou, R. Masson, and E. H. Quenjel, IMA Journal of Numerical Analysis, 42 (2) : 1231-1272, 2021.
Nonlinear finite volume discretization for transient diffusion problems on general meshes. Applied Numerical Mathematics, E. H. Quenjel, 161, 148–168, Novembre 2020.
Positive nonlinear DDFV scheme for a degenerate Parabolic system describing chemotaxis, M. Ibrahim, E. H. Quenjel, and M. Saad, Computers and mathematics with Applications, 80 (12), 2972-3003, 2020.
Numerical analysis of a vertex-centered finite volume scheme for a generalized thermistor model, M. Ghilani, E. H. Quenjel, and M. Rhoudaf, Computational Methods in Applied Mathematics, 21(1), 69–87, 2020.
Convergence of a positive non-linear DDFV scheme for degenerate parabolic equations, E. H. Quenjel, M. Saad, M. Ghilani, and M. Bessemoulin-Chatard, Calcolo, 57, 19, 2020.
Vertex Approximate Gradient Discretization preserving positivity for two-phase Darcy flows in heterogeneous porous media, K. Brenner, R. Masson, and E. H. Quenjel, Journal of Computational Physics, 409, 109357, 2020.
Positivity-preserving finite volume scheme for compressible two-phase flows in anisotropic porous media : the densities are depending on the physical pressures, M. Ghilani, E. H. Quenjel, and M. Saad, Journal of Computational Physics, 407, 109233, 2020.
Enhanced positive vertex-centered finite volume scheme for anisotropic convection-diffusion equations, E. H. Quenjel, ESAIM: Mathematical Modelling and Numerical Analysis, 54(2):591-618, 2020.
M. Ghilani, E. H. Quenjel, and M. Saad. Positive control volume finite element scheme for a degenerate compressible two phase flow in anisotropic porous media. Journal of Computational Geo-sciences, 23(1), 55–79, 2019.
Application of Finite Volume method to the Population Balance Equation in the context of Secondary Refrigeration, M. A. Hamadi, E. H. Quenjel, and P. Perré. Accepted for publication in JITH 2024. Lecture Notes in Mechanical Engineering. Springer, Cham, June 2024.
The key role of modeling in the hygro-thermal characterization of biobased building materials, P. Perré, E. H. Quenjel, B . Mazian and G. Almeida. Accepted for publication in JITH 2024. Lecture Notes in Mechanical Engineering. Springer, Cham, June 2024.
Efficient Prediction of the Thermal Conductivity of Wood from Its Microscopic Morphology, E. H. Quenjel and Patrick Perré. In: Ali-Toudert, F., Draoui, A., Halouani, K., Hasnaoui, M., Jemni, A., Tadrist, L. (eds) Advances in Thermal Science and Energy. JITH 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. 3-10, 2023.
A DDFV Scheme for Incompressible Two-Phase Flow Degenerate Problem in Porous Media, T. Crozon, E. H. Quenjel, and M. Saad. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., Navoret, L. (eds) Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems. FVCA 2023. Springer Proceedings in Mathematics & Statistics, vol 432. Springer, Cham. 385-393, 2023.
A robust VAG scheme for a two-phase flow problem in heterogeneous porous media, K. Brenner, R. Masson, and E. H. Quenjel. In: Klöfkorn, R., Keilegavlen, E., Radu, F.A., Fuhrmann, J. (eds) Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. FVCA 2020. Springer Proceedings in Mathematics & Statistics, vol 323. Springer, Cham. 565-573, 2020.
Finite volume/finite element schemes for compressible two-phase flows in heterogeneous and anisotropic porous media PDF file