Real-time Notifications, Feeds, and Web Services

Get real-time earthquake notifications sent to you on your phone or by email, or subscribe to real-time feeds. Use real-time web services for your own applications.

Javascript must be enabled to view our earthquake maps. To access USGS earthquake information without using javascript, use our Magnitude 2.5+ Earthquakes, Past Day ATOM Feed or our other earthquake feeds.


Earthquake Movie Download


DOWNLOAD 🔥 https://urluso.com/2yGaEI 🔥



The USGS monitors and reports on earthquakes, assesses earthquake impacts and hazards, and conducts targeted research on the causes and effects of earthquakes. We undertake these activities as part of the larger National Earthquake Hazards Reduction Program (NEHRP), a four-agency partnership established by Congress.

In its most general sense, the word earthquake is used to describe any seismic event that generates seismic waves. Earthquakes can occur naturally or be induced by human activities, such as mining, fracking, and nuclear tests. The initial point of rupture is called the hypocenter or focus, while the ground level directly above it is the epicenter. Earthquakes are primarily caused by geological faults, but also by volcanic activity, landslides, and other seismic events. The frequency, type, and size of earthquakes in an area define its seismic activity, reflecting the average rate of seismic energy release.

Significant historical earthquakes include the 1556 Shaanxi earthquake in China, with over 830,000 fatalities, and the 1960 Valdivia earthquake in Chile, the largest ever recorded at 9.5 magnitude. Earthquakes result in various effects, such as ground shaking and soil liquefaction, leading to significant damage and loss of life. When the epicenter of a large earthquake is located offshore, the seabed may be displaced sufficiently to cause a tsunami. Earthquakes can trigger landslides. Earthquakes' occurrence is influenced by tectonic movements along faults, including normal, reverse (thrust), and strike-slip faults, with energy release and rupture dynamics governed by the elastic-rebound theory.

Efforts to manage earthquake risks involve prediction, forecasting, and preparedness, including seismic retrofitting and earthquake engineering to design structures that withstand shaking. The cultural impact of earthquakes spans myths, religious beliefs, and modern media, reflecting their profound influence on human societies. Similar seismic phenomena, known as marsquakes and moonquakes, have been observed on other celestial bodies, indicating the universality of such events beyond Earth.

An earthquake is the shaking of the surface of Earth resulting from a sudden release of energy in the lithosphere that creates seismic waves. Earthquakes may also be referred to as quakes, tremors, or temblors. The word tremor is also used for non-earthquake seismic rumbling.

The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time. The seismicity at a particular location in the Earth is the average rate of seismic energy release per unit volume.

The 1960 Chilean earthquake is the largest earthquake that has been measured on a seismograph, reaching 9.5 magnitude on 22 May 1960.[4][5] Its epicenter was near Caete, Chile. The energy released was approximately twice that of the next most powerful earthquake, the Good Friday earthquake (27 March 1964), which was centered in Prince William Sound, Alaska.[6][7] The ten largest recorded earthquakes have all been megathrust earthquakes; however, of these ten, only the 2004 Indian Ocean earthquake is simultaneously one of the deadliest earthquakes in history.

Earthquakes that caused the greatest loss of life, while powerful, were deadly because of their proximity to either heavily populated areas or the ocean, where earthquakes often create tsunamis that can devastate communities thousands of kilometers away. Regions most at risk for great loss of life include those where earthquakes are relatively rare but powerful, and poor regions with lax, unenforced, or nonexistent seismic building codes.

Tectonic earthquakes occur anywhere on the earth where there is sufficient stored elastic strain energy to drive fracture propagation along a fault plane. The sides of a fault move past each other smoothly and aseismically only if there are no irregularities or asperities along the fault surface that increases the frictional resistance. Most fault surfaces do have such asperities, which leads to a form of stick-slip behavior. Once the fault has locked, continued relative motion between the plates leads to increasing stress and, therefore, stored strain energy in the volume around the fault surface. This continues until the stress has risen sufficiently to break through the asperity, suddenly allowing sliding over the locked portion of the fault, releasing the stored energy.[8] This energy is released as a combination of radiated elastic strain seismic waves,[9] frictional heating of the fault surface, and cracking of the rock, thus causing an earthquake. This process of gradual build-up of strain and stress punctuated by occasional sudden earthquake failure is referred to as the elastic-rebound theory. It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth or is converted into heat generated by friction. Therefore, earthquakes lower the Earth's available elastic potential energy and raise its temperature, though these changes are negligible compared to the conductive and convective flow of heat out from the Earth's deep interior.[10]

There are three main types of fault, all of which may cause an interplate earthquake: normal, reverse (thrust), and strike-slip. Normal and reverse faulting are examples of dip-slip, where the displacement along the fault is in the direction of dip and where movement on them involves a vertical component. Many earthquakes are caused by movement on faults that have components of both dip-slip and strike-slip; this is known as oblique slip. The topmost, brittle part of the Earth's crust, and the cool slabs of the tectonic plates that are descending into the hot mantle, are the only parts of our planet that can store elastic energy and release it in fault ruptures. Rocks hotter than about 300 C (572 F) flow in response to stress; they do not rupture in earthquakes.[11][12] The maximum observed lengths of ruptures and mapped faults (which may break in a single rupture) are approximately 1,000 km (620 mi). Examples are the earthquakes in Alaska (1957), Chile (1960), and Sumatra (2004), all in subduction zones. The longest earthquake ruptures on strike-slip faults, like the San Andreas Fault (1857, 1906), the North Anatolian Fault in Turkey (1939), and the Denali Fault in Alaska (2002), are about half to one third as long as the lengths along subducting plate margins, and those along normal faults are even shorter.

Normal faults occur mainly in areas where the crust is being extended such as a divergent boundary. Earthquakes associated with normal faults are generally less than magnitude 7. Maximum magnitudes along many normal faults are even more limited because many of them are located along spreading centers, as in Iceland, where the thickness of the brittle layer is only about six kilometres (3.7 mi).[13][14]

Reverse faults occur in areas where the crust is being shortened such as at a convergent boundary. Reverse faults, particularly those along convergent boundaries, are associated with the most powerful earthquakes (called megathrust earthquakes) including almost all of those of magnitude 8 or more. Megathrust earthquakes are responsible for about 90% of the total seismic moment released worldwide.[15]

Strike-slip faults are steep structures where the two sides of the fault slip horizontally past each other; transform boundaries are a particular type of strike-slip fault. Strike-slip faults, particularly continental transforms, can produce major earthquakes up to about magnitude 8. Strike-slip faults tend to be oriented near vertically, resulting in an approximate width of 10 km (6.2 mi) within the brittle crust.[16] Thus, earthquakes with magnitudes much larger than 8 are not possible.

In addition, there exists a hierarchy of stress levels in the three fault types. Thrust faults are generated by the highest, strike-slip by intermediate, and normal faults by the lowest stress levels.[17] This can easily be understood by considering the direction of the greatest principal stress, the direction of the force that "pushes" the rock mass during the faulting. In the case of normal faults, the rock mass is pushed down in a vertical direction, thus the pushing force (greatest principal stress) equals the weight of the rock mass itself. In the case of thrusting, the rock mass "escapes" in the direction of the least principal stress, namely upward, lifting the rock mass, and thus, the overburden equals the least principal stress. Strike-slip faulting is intermediate between the other two types described above. This difference in stress regime in the three faulting environments can contribute to differences in stress drop during faulting, which contributes to differences in the radiated energy, regardless of fault dimensions.

For every unit increase in magnitude, there is a roughly thirty-fold increase in the energy released. For instance, an earthquake of magnitude 6.0 releases approximately 32 times more energy than a 5.0 magnitude earthquake and a 7.0 magnitude earthquake releases 1,000 times more energy than a 5.0 magnitude earthquake. An 8.6-magnitude earthquake releases the same amount of energy as 10,000 atomic bombs of the size used in World War II.[18]

Earthquakes often occur in volcanic regions and are caused there, both by tectonic faults and the movement of magma in volcanoes. Such earthquakes can serve as an early warning of volcanic eruptions, as during the 1980 eruption of Mount St. Helens.[23] Earthquake swarms can serve as markers for the location of the flowing magma throughout the volcanoes. These swarms can be recorded by seismometers and tiltmeters (a device that measures ground slope) and used as sensors to predict imminent or upcoming eruptions.[24] 152ee80cbc

download and play battleground mobile india

gta 5 real life mod download xbox one

sade 2