Foundations of Data Science - Virtual Talk Series

Thursday May 6 - 11am PT (2pm ET, 6pm UTC, 7pm CET)

Hamed Hassani (University of Pennsylvania)

Hamed Hassani is currently an assistant professor of department of Electrical and Systems Engineering as well as the department of Computer and Information Sciences at the University of Pennsylvania. Prior to that, he was a research fellow at Simons Institute for the Theory of Computing (UC Berkeley) affiliated with the program of Foundations of Machine Learning, and a post-doctoral researcher in the Institute of Machine Learning at ETH Zurich. He received a Ph.D. degree in Computer and Communication Sciences from EPFL, Lausanne. He is the recipient of the 2014 IEEE Information Theory Society Thomas M. Cover Dissertation Award, 2015 IEEE International Symposium on Information Theory Student Paper Award, 2017 Simons-Berkeley Fellowship, 2018 NSF-CRII Research Initiative Award, 2020 Air Force Office of Scientific Research (AFOSR) Young Investigator Award, 2020 National Science Foundation (NSF) CAREER Award, and 2020 Intel Rising Star Award.

Title: Learning Robust Models: How does the Geometry of Perturbations Play a Role?

Register to receive zoom link for the talk:

Abstract: In this talk, we will focus on the emerging field of (adversarially) robust machine learning. The talk will be self-contained and no particular background on robust learning will be needed. Recent progress in this field has been accelerated by the observation that despite unprecedented performance on clean data, modern learning models remain fragile to seemingly innocuous changes such as small, norm-bounded additive perturbations. Moreover, recent work in this field has looked beyond norm-bounded perturbations and has revealed that various other types of distributional shifts in the data can significantly degrade performance. However, in general our understanding of such shifts is in its infancy and several key questions remain unaddressed.


The goal of this talk is to explain why robust learning paradigms have to be designed — and sometimes rethought — based on the geometry of the input perturbations. We will cover a wide range of perturbation geometries from simple norm-bounded perturbations, to sparse, natural, and more general distribution shifts. As we will show, the geometry of the perturbations necessitates fundamental modifications to the learning procedure as well as the architecture in order to ensure robustness. In the first part of the talk, we will discuss our recent theoretical results on robust learning with respect to various geometries, along with fundamental tradeoffs between robustness and accuracy, phase transitions, etc. The remaining portion of the talk will be about developing practical robust training algorithms and evaluating the resulting (robust) deep networks against state-of-the-art methods on naturally-varying, real-world datasets.