Nature Communications (1)
NPJ Computational Materials (2)
Angewandte Chemie (1)
Journal of American Chemistry Society (2)
Advanced Science (1)
SMALL (2)
ACS Applied Materials & Interfaces (2)
Materials Today Physics (1)
Physical Review B (2)
Physical Review Materials (1)
International journal of Heat and MAss Transfer (1)
Journal of energy chemistry (1)
Science Advances (2)
Advanced Materials (2)
Nano Energy (1)
Nano Letters (1)
Advanced Functional Materials (1)
Digital Discovery (1)
Applied Energy (1)
Energy Conversion and Management (2)
(working on)
Our fine-tuning *** model paper is currently in progress (leading).
Our high-throughput **** paper is currently in progress (leading).
Our another high-throughput *** lattice thermal conductivity paper is currently in progress (leading).
Our another battery paper is currently in progress (main contributors).
Our collaborative paper on evaluating ZT value will be submitted to ACS Energy Letters soon.
Our ferroelectric manuscript will be submitted to Nature Materials soon (partial contribution).
Our case study paper for thermal conductivity is ready to submitted to Physical Review Applied soon(main contribution).
Our collaborative thermoelectric compounds manuscript will be submitted to JACS soon (main contribution).
Our collaborative software paper (****) will be submitted to NPJ Computational Materials soon.
(published or submitted)
Our high-throughput phonon calculation paper is ready to submit to Scientific data.
Xingchen Shen,# Jiongzhi Zheng,# Michael Marek Koza, Petr Levinsky, Jiri Hejtmanek, PhilippeBoullay, Bernard Raveau, Jinghui Wang, Jun Li, Pierric Lemoine, Christophe Candolfi, EmmanuelGuilmeau* (2025). Accelerated Discovery of Crystalline Materials with Record Ultralow Lattice Thermal Conductivity via a Universal Descriptor. Nature Communications. (accepted).
Islam, M. M., Zheng, J., Pike, A., Star, K. E., Bux, S. K., Hautier, G., & Kauzlarich, S. M. (2025). Diffuson-Driven Lattice Thermal Conductivity in Zintl Arsenides: Disrupting Mass-Thermal Conductivity Relation for High Thermoelectric Performance. Journal of the American Chemical Society.(link)
Yin#, H., Zheng#, J., Zheng, F., Wen, Z., Shi, H., Zhou, Y., ... & Liu, Y. Tailored Ta2O5/TiO2 Nanointerfaces Engineering for Reinforced Structural Integrity and High‐Voltage Performance of Single‐Crystal Ni‐Rich Cathodes. Small, e09808.(link)
Zheng, J., Chang, Z., Lin, C., Lin, C., Zhou, Y., Huang, B., ... & Hautier, G. . Ineffectiveness of formamidine in suppressing ultralow thermal conductivity in cubic hybrid perovskite FAPbI3. NPJ Comput Mater 11, 315 (2025). (link)
Isotta, E., Wynnychenko, R., Mukherjee, B., Kaman, J., Sahasrabuddhe, H., Zheng, J., Jain, A., Hautier, G., Zevalkink, A., Musterman, E. and Dierolf, V., 2025. Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3. Advanced Functional Materials, p.e17850.(link)
Yue#, J., Zheng*#, J., Shen#, X., Maji, K., Yang, C. C., Lin, S., ... & Cui, T. (2025). Diffuson‐Dominated Thermal Transport Crossover From Ordered to Liquid‐Like Cu3BiS3: The Negligible Role of Ion Hopping. Small, e06386.(link)
Ganose, A.M., Sahasrabuddhe, H., Asta, M., Beck, K., Biswas, T., Bonkowski, A., Bustamante, J., Chen, X., Chiang, Y., Chrzan, D.C. and Clary, J., 2025. Atomate2: Modular workflows for materials science. Digital Discovery.(link)
Guo, S., Yue, J., Zheng, J., Zhang, H., Wang, N., Li, J., ... & Cui, T. (2025). Bidirectional optimization of transport properties for thermoelectric performance via hydrostatic pressure in chalcopyrite AgXTe2 (X= In, Ga). Physical Review B, 111(18), 184312.(link)
Zheng, J., Komza, L., Xiong, Y., Sheremetyeva, N., Lin, C., Griffin, S. M., ... & Hautier, G. (2024). Compressive-Sensing-Enhanced First-Principles Calculation of Photoluminescence Spectra in Color Centers: A Comparison between Theory and Experiment for the G Center in Silicon. arXiv preprint arXiv:2402.08067. (Under revision at Physical Review Materials) (link)
Li#, T., Naveed#, A., Zheng#, J., Chen, B., Jiang, M., Liu, B., ... & Liu, Y. (2025). Engineering Aqueous Electrolytes with Vicinal S‐based Organic Additives for Highly Reversible Zinc‐Ion Batteries. Angewandte Chemie International Edition, 64(21), e202424095.(link)
Chris-Okoro, I., Cherono, S., Akande, W., Nalawade, S., Liu, M., Martin, C., Craciun, V., Kim, R.S., Mahl, J., Cuk, T. and Yano, J., 2025. Optical and Plasmonic Properties of High-Electron-Density Epitaxial and Oxidative Controlled Titanium Nitride Thin Films. The Journal of Physical Chemistry C.(link)
Wang#, G., Zheng#, J., Xue#, J., Xu, Y., Zheng, Q., Hautier, G., ... & Zhou, Y. (2024). Observation of Extraordinary Vibration Scatterings Induced by Strong Anharmonicity in Lead‐Free Halide Double Perovskites. Advanced Science, 2408149.(link)
Yue, J., Liu, Y., & Zheng*, J. (2025). Interlayer thermal transport and glasslike behavior in crystalline CsCu4Se3. Physical Review B, 111(2), 024313. (link)
Shi#, H., Zheng#, J., Wan, T., Wang, H., Wen, Z., Zheng, F., ... & Chu, D. (2025). Constructing electrochemically stable single crystal Ni-rich cathode material via modification with high valence metal oxides. Journal of Energy Chemistry, 101, 392-401. (link)
Zheng, J., Lin, C., Lin, C., Hautier, G., Guo, R., & Huang, B. (2024). Unravelling ultralow thermal conductivity in perovskite Cs2AgBiBr6: dominant wave-like phonon tunnelling and strong anharmonicity. Npj Computational Materials, 10(1), 30.(link)
Yue#, J., Zheng#*, J., Li, J., Guo, S., Ren, W., Liu, H., ... & Cui, T. (2024). Ultralow Glassy Thermal Conductivity and Controllable, Promising Thermoelectric Properties in Crystalline o-CsCu5S3. ACS Applied Materials & Interfaces, 16(16), 20597-20609. (link).
Yue#, J., Zheng#*, J., Li, J., Shen, X., Ren, W., Hautier, G., ... & Cui, T. (2024). Hierarchical Characterization of Thermoelectric Performance in Copper-Based Chalcogenide CsCu3S2: Unveiling the role of Anharmonic Lattice Dynamics. Materials Today Physics. (link)
Hao#, Y., Zuo#, Y., Zheng#*, J., Hou, W., Gu, H., Wang, X., ... & Gao, Z. (2024). Machine learning for predicting ultralow thermal conductivity and high ZT in complex thermoelectric materials. ACS Applied Materials & Interfaces, 16(36), 47866-47878..(link)
Chang#, Z., Zheng#, J., Ma, J., Zhang, X., Gao, Y., & Tang, D. (2024). Temperature-dependent interatomic force constants and phonon coherent resonance contribution in quaternary non-centrosymmetric chalcogenides BaAg2SnSe4. International Journal of Heat and Mass Transfer, 219, 124863. (link)
Lin, C., Li, K., Li, M., Dopphoopha, B., Zheng, J., Wang, J., ... & Huang, B. (2024). Pushing Radiative Cooling Technology to Real Applications. Advanced Materials, 2409738. (link)
Xiong, Y., Zheng, J., McBride, S., Zhang, X., Griffin, S. M., & Hautier, G. (2024). Computationally Driven Discovery of T Center-like Quantum Defects in Silicon. Journal of the American Chemical Society. (link)
Li, G., Zheng, J., Cui, Z., & Guo, R. (2024). Unusual temperature dependence of thermal conductivity due to phonon resonance scattering by point defects in cubic BN. Physical Review B, 110(6), L060101. (link)
Tang, J., Zheng, J., Song, X., Cheng, L., & Guo, R. (2024). In-plane thermal conductivity of hexagonal boron nitride from 2D to 3D. Journal of Applied Physics, 135(20). (link)
Li, G., Tang, J., Zheng, J., Wang, Q., Cui, Z., Xu, K., ... & Li, B. (2024). Convergent thermal conductivity in strained monolayer graphene. Physical Review B, 109(3), 035420. (link)
Zheng, J., Lin, C., Lin, C., Huang, B., Guo, R. and Hautier, G., 2023. Wave-like Tunneling of Phonons Dominates Glass-like Thermal Transport in Quasi-1D Copper Halide CsCu2I3. arXiv preprint arXiv:2310.13680. (link)
Xiong, Yihuang, Céline Bourgois, Natalya Sheremetyeva, Wei Chen, Diana Dahliah, Hanbin Song, Jiongzhi Zheng, Sinéad M. Griffin, Alp Sipahigil, and Geoffroy Hautier. "High-throughput identification of spin-photon interfaces in silicon." Science Advances 9, no. 40 (2023): eadh8617.(link)
Lin, Chongjia, Wei Ma, Yinglun Zhang, Man‐Kwan LAW, Cruz Y. Li, Yang Li, Zengshun Chen et al. "A Highly Transparent Photo‐Electro‐Thermal Film with Broadband Selectivity for All‐Day Anti‐/De‐Icing." Small 19, no. 40 (2023): 2301723. (link)
Tang, J., Li, G., Wang, Q., Zheng, J., Cheng, L., & Guo, R. (2023). Effect of four-phonon scattering on anisotropic thermal transport in bulk hexagonal boron nitride by machine learning interatomic potential. International Journal of Heat and Mass Transfer, 207, 124011.(link)
Tang, J., Li, G., Wang, Q., Zheng, J., Cheng, L., & Guo, R. (2023). Competition between phonon-vacancy and four-phonon scattering in cubic boron arsenide by machine learning interatomic potential. Physical Review Materials, 7(4), 044601. (link)
Wang, Y., Tang, J., Li, G., Zheng, J., Song, X., Wang, Q., ... & Guo, R. (2023). Anisotropic thermal transport in chalcogenide perovskite CaZrS3 from machine learning interatomic potential. Eng Sci, 25, 952. (link)
Zheng, J., Shi, D., Yang, Y., Lin, C., Huang, H., Guo, R., & Huang, B. (2022). Anharmonicity-induced phonon hardening and phonon transport enhancement in crystalline perovskite BaZrO 3. Physical Review B, 105(22), 224303. (link)
Zheng, J., Shi, D., Liu, S., Yang, Y., Lin, C., Chang, Z., ... & Huang, B. (2022). Effects of high-order anharmonicity on anomalous lattice dynamics and thermal transport in fully filled skutterudite YbFe 4 Sb 12. Physical Review Materials, 6(9), 093801. (link)
Chang#, Z., Zheng#, J., Jing, Y., Li, W., Yuan, K., Ma, J., ... & Tang, D. (2022). Novel insights into lattice thermal transport in nanocrystalline Mg 3 Sb 2 from first principles: the crucial role of higher-order phonon scattering. Physical Chemistry Chemical Physics, 24(35), 20891-20900. (link)
Liu, S., Yang, Y., Huang, H., Zheng, J., Liu, G., To, T. H., & Huang, B. (2022). Giant and bidirectionally tunable thermopower in nonaqueous ionogels enabled by selective ion doping. Science advances, 8(1), eabj3019. (link)
Liu, S., Yang, Y., Chen, S., Zheng, J., Lee, D. G., Li, D., ... & Huang, B. (2022). High p-and n-type thermopowers in stretchable self-healing ionogels. Nano Energy, 100, 107542. (link)
Lin, C., Li, Y., Chi, C., Kwon, Y.S., Huang, J., Wu, Z., Zheng, J., Liu, G., Tso, C.Y., Chao, C.Y. and Huang, B., 2022. A solution‐processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Advanced Materials, 34(12), p.2109350. (link)
Yang, Y., Bai, Z., Liu, S., Zhu, Y., Zheng, J., Chen, G., & Huang, B. (2022). Self‐Protecting Aqueous Lithium‐Ion Batteries. Small, 18(38), 2203035. (link)
Yao, F., Xia, S., Wei, H., Zheng, J., Yuan, Z., Wang, Y., ... & Xu, D. (2022). Experimental evidence of superdiffusive thermal transport in Si0. 4Ge0. 6 thin films. Nano Letters, 22(17), 6888-6894. (link)
Chang, Z., Ma, J., Yuan, K., Zheng, J., Wei, B., Al-Fahdi, M., Gao, Y., Zhang, X., Shao, H., Hu, M. and Tang, D., 2022. Zintl Phase Compounds Mg3Sb2− x Bi x (x= 0, 1, and 2) Monolayers: Electronic, Phonon and Thermoelectric Properties From ab Initio Calculations. Frontiers in Mechanical Engineering, 8, p.876655. (link)
Chang, Z., Yuan, K., Li, J., Sun, Z., Zheng, J., Al-Fahdi, M., Gao, Y., Wei, B., Zhang, X., Hu, M. and Tang, D., 2022. Anomalous thermal conductivity induced by high dispersive optical phonons in rubidium and cesium halides. ES Energy & Environment, 16, pp.30-39. (link)
Zheng, J. (2022). First-Principles Study of Thermal Transport in Highly Anharmonic Materials and Complex Crystalline Polymers. Hong Kong University of Science and Technology (Hong Kong). (link)
Huang, H., Wu, H. H., Chi, C., Yang, Y., Zheng, J., Huang, B., & Wang, S. (2021). Phase-structure-dependent Na ion transport in yttrium-iodide sodium superionic conductor Na3YI 6. Journal of Materials Chemistry A, 9(46), 26256-26265. (link)
郑炯智. 燃气—蒸汽联合循环变工况运行优化. MS thesis. 华北电力大学 (北京), 2017. (link)
Zhang, G., Zheng, J., Yang, Y., & Liu, W. (2016). A novel LNG cryogenic energy utilization method for inlet air cooling to improve the performance of combined cycle. Applied energy, 179, 638-649. (link)
Zhang, G., Zheng, J., Yang, Y., & Liu, W. (2016). Thermodynamic performance simulation and concise formulas for triple-pressure reheat HRSG of gas–steam combined cycle under off-design condition. Energy conversion and management, 122, 372-385. (link)
Zhang, G., Zheng, J., Xie, A., Yang, Y., & Liu, W. (2016). Thermodynamic analysis of combined cycle under design/off-design conditions for its efficient design and operation. Energy conversion and management, 126, 76-88. (link)
郑炯智, 张国强, 许彦平, 白子为, 杨勇平, & 刘文毅. (2016). 顶底循环参数对燃气–蒸汽联合循环全工况性能影响分析. 中国电机工程学报, 36(23), 6418-6431.(link)
'Person's name'. 2022. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2022. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2022. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2022. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2022. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2021. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2021. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2021. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2021. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2021. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2023. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2023. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2023. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2023. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2023. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2022. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2022. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2022. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2022. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2022. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2021. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2021. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2021. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2021. 'Article name here.' Publication name, 1 January 2023. Article link.
'Person's name'. 2021. 'Article name here.' Publication name, 1 January 2023. Article link.