Research Publications ( Google Citation 127, h-index 8, i-10 index 6)

1. H. Sharma, On certain family of mixed summation-integral type two dimensional q-Lupas-Philips-Bernstein operators, Applied Mathematics and Computation, 259, 741-752, 2015. (I.F. 2.300) (SCI)

2. V. Gupta, T. M. Rassias, H Sharma, q-Durrmeyer operators based on Polya distribution, The Journal of Nonlinear Science and Applications, 9(4), 2016. (I.F. 1.340) (SCI)

3. B. Ibrahim, H. Sharma, Approximation properties of two dimensional q-Bernstein-Chlodowsky-Durrmeyer operators, Numerical Functional Analysis and Optimization, 33(12), 1351-1371, 2012. (I.F. 0.827) (SCI)

4. V. Gupta, H. Sharma, T. Kim and Sang-Hun Lee, Properties of q-analogue of Beta operator, Advances in Difference Equations, 2012, 2012:86. (I.F. 1.066) (SCI)

5. V. Gupta and H. Sharma, Recurrence formula and better approximation for q-Durrmeyer operators, Lobachevskii Journal of Mathematics, 32 (2), 140-145, 2011. DOI: 10.1134/S1995080211020065. (SCOPUS)

6. H. Sharma, C. Gupta, On (p, q)-generalization of Szász-Mirakyan Kantorovich operators, Bollettino dell'Unione Matematica Italiana, 8(3), 213-222, 2015. (SCOPUS)

7. H. Sharma, On Durrmeyer-type generalization of (p, q)-Bernstein operators, Arbian Journal of Mathematics, 5 (4), 239-248, 2016. (SCOPUS)

8. H. Sharma, C. Gupta and R. Maurya, Approximation properties of (p,q)-Meyer-Konig-Zeller Durrmeyer operators, Khayyam Journal of Mathematics, 5(1), 113-124, 2019. (SCOPUS)

9. H. Sharma, Approximation properties of rth order generalized Bernstein polynomials based on q-calculus, Analysis in Theory and Application, Applications, 27 (1), 40-50, 2011. DOI: 10.1007/s10496-011-0040-8. (Springer)

10. V. Gupta and H. Sharma, Statistical approximation by q integrated Meyer-Konig-Zeller and Kantrovich operators, Creative Mathematics and Informatics, 19 (1), 45-52, 2010.

11. H. Sharma, Properties of q- Meyer-Konig-Zeller Durrmeyer operators, Journal of Inequalities in Pure and Applied Mathematics, 10(4), 10 pp., 2009.

12. H. Sharma, Note on approximation properties of generalized Durrmeyer operators, Mathematical Sciences, 6:24, 2012. DOI:10.1186/2251-7456-6-24. (Springer open)

13. H. Sharma, J. Singh, A certain family of mixed summation-integral type Lupas Philips Bernstein operators, Mathematical Sciences, 6:26, 2012. DOI:10.1186/2251-7456-6-26. (Springer open)

14. H. Sharma, R. Maurya and C. Gupta, Approximation Properties of Kantorovich Type Modifications of (p, q)-Meyer-König-Zeller Operators, Constructive Mathematical Analysis, 1(1), 58-72, 2018.

15. H. Sharma, C. Gupta and R. Maurya, Better Error Estimation for the Mixed Szasz Baskakov Type Operators, International Journal of Advance Research and Innovation, 2017.

16. Honey Sharma, Vijay Athavale, Note on generalized q-Bernstein Durrmeyer operators, International Journal of Advance Research and Innovation, 2017.