This was a math enrichment lesson, in which I presented a real world problem that my fourth grade advanced math students would struggle through, using many math concepts that they already know. Knowing what to do with the numbers is sometimes more than half of the problem.

When I was in college (the first time;), I began painting to pay my way. Back then, it was just the outside of homes (exterior painting). Upon graduating, I conducted an informal internship with a wallpaper hanger. He taught me all about interior painting; which is VERY different from slapping paint on siding; and he trained me to hang wallpaper.


Download Wallpaper Hd Math


Download Zip 🔥 https://bltlly.com/2yGblw 🔥



I was 22 years old, had long, curly, brown hair, and according to my students who did end up earning the privilege of viewing my old photos, quite tan (nearly all of them commented on this fact;). I worked with the professional wallpaper hanger for a little less than a year, hanging all kinds of paper in all kinds of homes.

We ordered lawn signs and door hangers, spread the word, and pioneered a full-service painting/wallpaper business that did it all! We even dabbled in faux finishes, popular at the time. Faux finish is when you use tricks and artistic techniques to make pillars and walls look like marble, stone, or wood.

Because we were the only company that could do all three, we got a lot of business, especially in the new developments that were popping up in suburban areas near where we lived. The market was ripe, and we were busy.

There are many components to running a successful business. You have to market the company, spreading the word, so that people know to call you. Then you need to return phone calls and perform estimates. Those estimates need to be cheap enough that people will hire you, but expensive enough to cover the costs of supplies and provide a livable income.

Many of the skills and lessons that I learned through entrepreneurship are tapped in my teaching. Some days the professional world mixes with pedagogical practice more than others. My favorite place to bring my background to life is in math lessons.

The other day, I treated my fourth grade math enrichment class to a treat of problem-solving that had them working hard, thinking hard, and learning hard. The challenge was to help me come up with a price for wallpapering a couple of bathrooms.

Next, I shared a simple floor plan with my students. Some of them recognized the blueprint for what it was. I showed them the illustration of doors and asked them what the rectangle representing a closet was. We discussed what was happening in the picture for a minute. And then, I told them that our customer wants to wallpaper the two bathrooms.

The image was presented on an interactive Google Jamboard, so I could write on the board. I used a bright blue to rewrite the dimensions of the bathrooms in question. I told them that the ceilings were 8 feet high. When I turned around, I was met with incredulous faces. They had no idea what to do!

Once it was established that my picture of 4 rectangles were in fact the walls, we labeled the dimensions: Each one was eight feet high, and two were one length, while the other two were a different length.

In order to figure out the square footage of all of the walls, you solve the area of each, and add them together. This reads simple enough, but my students had never had to do anything like this before!

In order to illustrate this concept, I drew a square on a new, fresh Jamboard slide. I labeled it $1. Then I drew another square, the same size as the first, and drew a line down the middle. I labeled each half $.50. Before going any farther, my math enrichment students knew to halve the half.

I let them struggle a little before helping. They needed a bit of guidance. But, we figured out the square footage of all four walls. They did pretty good finding out what it would cost. And, the second bathroom was a little easier.

A funny experience happened at the very end of the afternoon lesson. This PM group of fourth graders originally entered the room with the announcement that they already knew the answer to the problem.

A wallpaper remains on the whole unchanged under certain isometries, starting with certain translations that confer on the wallpaper a repetitive nature. One of the reasons to be unchanged under certain translations is that it covers the whole plane. No mathematical object in our minds is stuck onto a motionless wall! On the contrary an observer or his eye is motionless in front of a transformation, which glides or rotates or flips a wallpaper, eventually could distort it, but that would be out of our subject.

The simplest wallpaper group, Group p1, applies when there is no symmetry other than the fact that a pattern repeats over regular intervals in two dimensions, as shown in the section on p1 below.

The number of symmetry groups depends on the number of dimensions in the patterns. Wallpaper groups apply to the two-dimensional case, intermediate in complexity between the simpler frieze groups and the three-dimensional space groups. Subtle differences may place similar patterns in different groups, while patterns that are very different in style, color, scale or orientation may belong to the same group.

A proof that there are only 17 distinct groups of such planar symmetries was first carried out by Evgraf Fedorov in 1891[1] and then derived independently by George Plya in 1924.[2] The proof that the list of wallpaper groups is complete only came after the much harder case of space groups had been done. The seventeen possible wallpaper groups are listed below in The seventeen groups.

Two such isometry groups are of the same type (of the same wallpaper group) if they are the same up to an affine transformation of the plane. Thus e.g. a translation of the plane (hence a translation of the mirrors and centres of rotation) does not affect the wallpaper group. The same applies for a change of angle between translation vectors, provided that it does not add or remove any symmetry (this is only the case if there are no mirrors and no glide reflections, and rotational symmetry is at most of order 2).

The purpose of this condition is to distinguish wallpaper groups from frieze groups, which possess a translation but not two linearly independent ones, and from two-dimensional discrete point groups, which have no translations at all. In other words, wallpaper groups represent patterns that repeat themselves in two distinct directions, in contrast to frieze groups, which only repeat along a single axis.

The discreteness condition means that there is some positive real number , such that for every translation Tv in the group, the vector v has length at least  (except of course in the case that v is the zero vector, but the independent translations condition prevents this, since any set that contains the zero vector is linearly dependent by definition and thus disallowed).

The purpose of this condition is to ensure that the group has a compact fundamental domain, or in other words, a "cell" of nonzero, finite area, which is repeated through the plane. Without this condition, one might have for example a group containing the translation Tx for every rational number x, which would not correspond to any reasonable wallpaper pattern.

One important and nontrivial consequence of the discreteness condition in combination with the independent translations condition is that the group can only contain rotations of order 2, 3, 4, or 6; that is, every rotation in the group must be a rotation by 180, 120, 90, or 60. This fact is known as the crystallographic restriction theorem,[3] and can be generalised to higher-dimensional cases.

A primitive cell is a minimal region repeated by lattice translations. All but two wallpaper symmetry groups are described with respect to primitive cell axes, a coordinate basis using the translation vectors of the lattice. In the remaining two cases symmetry description is with respect to centred cells that are larger than the primitive cell, and hence have internal repetition; the directions of their sides is different from those of the translation vectors spanning a primitive cell. Hermann-Mauguin notation for crystal space groups uses additional cell types.

Orbifold notation for wallpaper groups, advocated by John Horton Conway (Conway, 1992) (Conway 2008), is based not on crystallography, but on topology. One can fold the infinite periodic tiling of the plane into its essence, an orbifold, then describe that with a few symbols.

When an orbifold replicates by symmetry to fill the plane, its features create a structure of vertices, edges, and polygon faces, which must be consistent with the Euler characteristic. Reversing the process, one can assign numbers to the features of the orbifold, but fractions, rather than whole numbers. Because the orbifold itself is a quotient of the full surface by the symmetry group, the orbifold Euler characteristic is a quotient of the surface Euler characteristic by the order of the symmetry group.

Feature strings with other sums are not nonsense; they imply non-planar tilings, not discussed here. (When the orbifold Euler characteristic is negative, the tiling is hyperbolic; when positive, spherical or bad).

Like for tag_hash_119_3, imagine a tessellation of the plane with equilateral triangles of equal size, with the sides corresponding to the smallest translations. Then half of the triangles are in one orientation, and the other half upside down. This wallpaper group corresponds to the case that all triangles of the same orientation are equal, while both types have rotational symmetry of order three, and both are symmetric, but the two are not equal, and not each other's mirror image. For a given image, three of these tessellations are possible, each with rotation centres as vertices. In terms of the image: the vertices can be the red, the blue or the green triangles. 152ee80cbc

jeep wala game download

bhojpuri song download video hd

currency forecasting michael rosenberg pdf free download