Systematic reviews aim to identify all studies that are relevant to their research questions and to synthesize data about the design, risk of bias, and results of those studies. Consequently, the findings of a systematic review depend critically on decisions relating to which data from these studies are presented and analysed. Data collected for systematic reviews should be accurate, complete, and accessible for future updates of the review and for data sharing. Methods used for these decisions must be transparent; they should be chosen to minimize biases and human error. Here we describe approaches that should be used in systematic reviews for collecting data, including extraction of data directly from journal articles and other reports of studies.

Individual participant data (IPD) are usually sought directly from the researchers responsible for the study, or may be identified from open data repositories (e.g. www.clinicalstudydatarequest.com). These data typically include variables that represent the characteristics of each participant, intervention (or exposure) group, prognostic factors, and measurements of outcomes (Stewart et al 2015). Access to IPD has the advantage of allowing review authors to reanalyse the data flexibly, in accordance with the preferred analysis methods outlined in the protocol, and can reduce the variation in analysis methods across studies included in the review. IPD reviews are addressed in detail in Chapter 26.


Download Copy Extract Data From An Open System Done Fraudulently Is Treated As Mcq


Download Zip 🔥 https://bltlly.com/2y3CPI 🔥



The numbers required for meta-analysis are not always available. Often, other statistics can be collected and converted into the required format. For example, for a continuous outcome, it is usually most convenient to seek the number of participants, the mean and the standard deviation for each intervention group. These are often not available directly, especially the standard deviation. Alternative statistics enable calculation or estimation of the missing standard deviation (such as a standard error, a confidence interval, a test statistic (e.g. from a t-test or F-test) or a P value). These should be extracted if they provide potentially useful information (see MECIR Box 5.3.c). Details of recalculation are provided in Section 5.6. Further considerations for dealing with missing data are discussed in Chapter 10, Section 10.12.

The data collection form is a bridge between what is reported by the original investigators (e.g. in journal articles, abstracts, personal correspondence) and what is ultimately reported by the review authors. The data collection form serves several important functions (Meade and Richardson 1997). First, the form is linked directly to the review question and criteria for assessing eligibility of studies, and provides a clear summary of these that can be used to identify and structure the data to be extracted from study reports. Second, the data collection form is the historical record of the provenance of the data used in the review, as well as the multitude of decisions (and changes to decisions) that occur throughout the review process. Third, the form is the source of data for inclusion in an analysis.

A good data collection form should minimize the need to go back to the source documents. When designing a data collection form, review authors should involve all members of the team, that is, content area experts, authors with experience in systematic review methods and data collection form design, statisticians, and persons who will perform data extraction. Here are suggested steps and some tips for designing a data collection form, based on the informal collation of experiences from numerous review authors (Li et al 2015).

Data extractors should have at least a basic understanding of the topic, and have knowledge of study design, data analysis and statistics. They should pay attention to detail while following instructions on the forms. Because errors that occur at the data extraction stage are rarely detected by peer reviewers, editors, or users of systematic reviews, it is recommended that more than one person extract data from every report to minimize errors and reduce introduction of potential biases by review authors (see MECIR Box 5.5.a). As a minimum, information that involves subjective interpretation and information that is critical to the interpretation of results (e.g. outcome data) should be extracted independently by at least two people (see MECIR Box 5.5.a). In common with implementation of the selection process (Chapter 4, Section 4.6), it is preferable that data extractors are from complementary disciplines, for example a methodologist and a topic area specialist. It is important that everyone involved in data extraction has practice using the form and, if the form was designed by someone else, receives appropriate training.

Evidence in support of duplicate data extraction comes from several indirect sources. One study observed that independent data extraction by two authors resulted in fewer errors than data extraction by a single author followed by verification by a second (Buscemi et al 2006). A high prevalence of data extraction errors (errors in 20 out of 34 reviews) has been observed (Jones et al 2005). A further study of data extraction to compute standardized mean differences found that a minimum of seven out of 27 reviews had substantial errors (Gtzsche et al 2007).

When more than one author extracts data from the same reports, there is potential for disagreement. After data have been extracted independently by two or more extractors, responses must be compared to assure agreement or to identify discrepancies. An explicit procedure or decision rule should be specified in the protocol for identifying and resolving disagreements. Most often, the source of the disagreement is an error by one of the extractors and is easily resolved. Thus, discussion among the authors is a sensible first step. More rarely, a disagreement may require arbitration by another person. Any disagreement that cannot be resolved should be addressed by contacting the study authors; if this is unsuccessful, the disagreement should be reported in the review.

Clinical study reports (CSRs) obtained for a systematic review are likely to be in PDF format. Although CSRs can be thousands of pages in length and very time-consuming to review, they typically follow the content and format required by the International Conference on Harmonisation (ICH 1995). Information in CSRs is usually presented in a structured and logical way. For example, numerical data pertaining to important demographic, efficacy, and safety variables are placed within the main text in tables and figures. Because of the clarity and completeness of information provided in CSRs, data extraction from CSRs may be clearer and conducted more confidently than from journal articles or other short reports.

Sometimes numerical data needed for systematic reviews are only presented in figures. Review authors may request the data from the study investigators, or alternatively, extract the data from the figures either manually (e.g. with a ruler) or by using software. Numerous tools are available, many of which are free. Those available at the time of writing include tools called Plot Digitizer, WebPlotDigitizer, Engauge, Dexter, ycasd, GetData Graph Digitizer. The software works by taking an image of a figure and then digitizing the data points off the figure using the axes and scales set by the users. The numbers exported can be used for systematic reviews, although additional calculations may be needed to obtain the summary statistics, such as calculation of means and standard deviations from individual-level data points (or conversion of time-to-event data presented on Kaplan-Meier plots to hazard ratios; see Chapter 6, Section 6.8.2).

It has been demonstrated that software is more convenient and accurate than visual estimation or use of a ruler (Gross et al 2014, Jelicic Kadic et al 2016). Review authors should consider using software for extracting numerical data from figures when the data are not available elsewhere.

 Each tool focuses on only a limited number of data elements (ranges from one to seven). Most of the existing tools focus on the PICO information (e.g. number of participants, their age, sex, country, recruiting centres, intervention groups, outcomes, and time points). A few are able to extract study design and results (e.g. objectives, study duration, participant flow), and two extract risk of bias information (Marshall et al 2016, Millard et al 2016). To date, well over half of the data elements needed for systematic reviews have not been explored for automated extraction.

Jelicic Kadic A, Vucic K, Dosenovic S, Sapunar D, Puljak L. Extracting data from figures with software was faster, with higher interrater reliability than manual extraction. Journal of Clinical Epidemiology 2016; 74: 119-123.

In fact, IoT is another big player implemented in a number of other industries including healthcare. Until recently, the objects of common use such as cars, watches, refrigerators and health-monitoring devices, did not usually produce or handle data and lacked internet connectivity. However, furnishing such objects with computer chips and sensors that enable data collection and transmission over internet has opened new avenues. The device technologies such as Radio Frequency IDentification (RFID) tags and readers, and Near Field Communication (NFC) devices, that can not only gather information but interact physically, are being increasingly used as the information and communication systems [3]. This enables objects with RFID or NFC to communicate and function as a web of smart things. The analysis of data collected from these chips or sensors may reveal critical information that might be beneficial in improving lifestyle, establishing measures for energy conservation, improving transportation, and healthcare. In fact, IoT has become a rising movement in the field of healthcare. IoT devices create a continuous stream of data while monitoring the health of people (or patients) which makes these devices a major contributor to big data in healthcare. Such resources can interconnect various devices to provide a reliable, effective and smart healthcare service to the elderly and patients with a chronic illness [12]. 2351a5e196

download bob seger

wedding anniversary greetings free download

download mobile jkn for pc

download cover me with the blood

why can 39;t i download vanguard campaign