Prior to his faculty appointment, Prof. Bongo Adi was CIPRA MTN Research Fellow at Lagos Business School where he facilitated classes in Public Private Partnerships (PPPs), project finance and development.

He has over 15 years experience in teaching, policy research, and consulting. As an assistant professor, he has lectured at the University of Tsukuba, Japan, where he was a JSPS fellow, and at the American University of Nigeria. He has received several international awards including the Japan Society for the Promotion of Science (JSPS) award. He is a UNU Fellow and a World Bank scholar.


Download Bongo Dsm By Prof J


Download 🔥 https://urlin.us/2yGaAv 🔥



Adi has consulted for the World Bank, UNCTAD, JIRCAS, JICA and UNU. He is widely published and his current research interests include electricity market design, private public partnerships, and political economy of mega projects.

He holds an MA and a PhD in development economics from the prestigious University of Tsukuba, Japan. He undertook post doctoral training at the Data Mining Team of the National Agricultural Research Centre, Tsukuba, Japan where he developed routines for forecasting rice yields from paddies using remote sensing data from the Japan Aerospace Exploration Agency (JAXA).

Starting with the Luis Conte signature model, these Siam oak bongos are outfitted with True Skin cow heads and feature the traditional solid woodblock connection, a design element that Luis wanted to include on the bongos bearing his name. Other professional bongos have shells that are contoured to form greater resonance by having a slight hour glass shape.

LinkedIn and 3rd parties use essential and non-essential cookies to provide, secure, analyze and improve our Services, and to show you relevant ads (including professional and job ads) on and off LinkedIn. Learn more in our Cookie Policy.

Feynman developed a widely used pictorial representation scheme for the mathematical expressions describing the behavior of subatomic particles, which later became known as Feynman diagrams. During his lifetime, Feynman became one of the best-known scientists in the world. In a 1999 poll of 130 leading physicists worldwide by the British journal Physics World, he was ranked the seventh-greatest physicist of all time.[1]

He assisted in the development of the atomic bomb during World War II and became known to the wider public in the 1980s as a member of the Rogers Commission, the panel that investigated the Space Shuttle Challenger disaster. Along with his work in theoretical physics, Feynman has been credited with pioneering the field of quantum computing and introducing the concept of nanotechnology. He held the Richard C. Tolman professorship in theoretical physics at the California Institute of Technology.

Feynman was a keen popularizer of physics through both books and lectures, including a 1959 talk on top-down nanotechnology called There's Plenty of Room at the Bottom and the three-volume publication of his undergraduate lectures, The Feynman Lectures on Physics. Feynman also became known through his autobiographical books Surely You're Joking, Mr. Feynman! and What Do You Care What Other People Think?, and books written about him such as Tuva or Bust! by Ralph Leighton and the biography Genius: The Life and Science of Richard Feynman by James Gleick.

The young Feynman was heavily influenced by his father, who encouraged him to ask questions to challenge orthodox thinking, and who was always ready to teach Feynman something new. From his mother, he gained the sense of humor that he had throughout his life. As a child, he had a talent for engineering,[9] maintained an experimental laboratory in his home, and delighted in repairing radios. This radio repairing was probably the first job Feynman had, and during this time he showed early signs of an aptitude for his later career in theoretical physics, when he would analyze the issues theoretically and arrive at the solutions.[10] When he was in grade school, he created a home burglar alarm system while his parents were out for the day running errands.[11]

When Richard was five, his mother gave birth to a younger brother, Henry Phillips, who died at age four weeks.[12] Four years later, Richard's sister Joan was born and the family moved to Far Rockaway, Queens.[3] Though separated by nine years, Joan and Richard were close, and they both shared a curiosity about the world.[13] Though their mother thought women lacked the capacity to understand such things, Richard encouraged Joan's interest in astronomy, and Joan eventually became an astrophysicist.[14]

Feynman's parents were both from Jewish families,[3] and his family went to the synagogue every Friday.[15] However, by his youth, Feynman described himself as an "avowed atheist".[16][17] Many years later, in a letter to Tina Levitan, declining a request for information for her book on Jewish Nobel Prize winners, he stated, "To select, for approbation the peculiar elements that come from some supposedly Jewish heredity is to open the door to all kinds of nonsense on racial theory", adding, "at thirteen I was not only converted to other religious views, but I also stopped believing that the Jewish people are in any way 'the chosen people'".[18]

Later in life, during a visit to the Jewish Theological Seminary, Feynman encountered the Talmud for the first time. He saw that it contained the original text in a little square on the page, and surrounding it were commentaries written over time by different people. In this way the Talmud had evolved, and everything that was discussed was carefully recorded. Despite being impressed, Feynman was disappointed with the lack of interest for nature and the outside world expressed by the rabbis, who cared about only those questions which arise from the Talmud.[19]

When Feynman was 15, he taught himself trigonometry, advanced algebra, infinite series, analytic geometry, and both differential and integral calculus.[24] Before entering college, he was experimenting with mathematical topics such as the half-derivative using his own notation.[25] He created special symbols for logarithm, sine, cosine and tangent functions so they did not look like three variables multiplied together, and for the derivative, to remove the temptation of canceling out the d {\displaystyle d} 's in d / d x {\displaystyle d/dx} .[26][27] A member of the Arista Honor Society, in his last year in high school he won the New York University Math Championship.[28] His habit of direct characterization sometimes rattled more conventional thinkers; for example, one of his questions, when learning feline anatomy, was "Do you have a map of the cat?" (referring to an anatomical chart).[29]

Feynman applied to Columbia University but was not accepted because of its quota for the number of Jews admitted.[3] Instead, he attended the Massachusetts Institute of Technology, where he joined the Pi Lambda Phi fraternity.[30] Although he originally majored in mathematics, he later switched to electrical engineering, as he considered mathematics to be too abstract. Noticing that he "had gone too far", he then switched to physics, which he claimed was "somewhere in between".[31] As an undergraduate, he published two papers in the Physical Review.[28] One of these, which was co-written with Manuel Vallarta, was entitled "The Scattering of Cosmic Rays by the Stars of a Galaxy".[32] .mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequote .templatequotecite{line-height:1.5em;text-align:left;padding-left:1.6em;margin-top:0}

Vallarta let his student in on a secret of mentor-protg publishing: the senior scientist's name comes first. Feynman had his revenge a few years later, when Heisenberg concluded an entire book on cosmic rays with the phrase: "such an effect is not to be expected according to Vallarta and Feynman". When they next met, Feynman asked gleefully whether Vallarta had seen Heisenberg's book. Vallarta knew why Feynman was grinning. "Yes," he replied. "You're the last word in cosmic rays."[33]

One of the conditions of Feynman's scholarship to Princeton was that he could not be married; nevertheless, he continued to see his high school sweetheart, Arline Greenbaum, and was determined to marry her once he had been awarded his PhD despite the knowledge that she was seriously ill with tuberculosis. This was an incurable disease at the time, and she was not expected to live more than two years. On June 29, 1942, they took the ferry to Staten Island, where they were married in the city office. The ceremony was attended by neither family nor friends and was witnessed by a pair of strangers. Feynman could kiss Arline only on the cheek. After the ceremony he took her to Deborah Hospital, where he visited her on weekends.[45][46]

In 1941, with World War II occurring in Europe but the United States not yet at war, Feynman spent the summer working on ballistics problems at the Frankford Arsenal in Pennsylvania.[47][48] After the attack on Pearl Harbor brought the United States into the war, Feynman was recruited by Robert R. Wilson, who was working on means to produce enriched uranium for use in an atomic bomb, as part of what would become the Manhattan Project.[49][50] At the time, Feynman had not earned a graduate degree.[51] Wilson's team at Princeton was working on a device called an isotron, intended to electromagnetically separate uranium-235 from uranium-238. This was done in a quite different manner from that used by the calutron that was under development by a team under Wilson's former mentor, Ernest O. Lawrence, at the Radiation Laboratory of the University of California. On paper, the isotron was many times more efficient than the calutron, but Feynman and Paul Olum struggled to determine whether it was practical. Ultimately, on Lawrence's recommendation, the isotron project was abandoned.[52]

At this juncture, in early 1943, Robert Oppenheimer was establishing the Los Alamos Laboratory, a secret laboratory on a mesa in New Mexico where atomic bombs would be designed and built. An offer was made to the Princeton team to be redeployed there. "Like a bunch of professional soldiers," Wilson later recalled, "we signed up, en masse, to go to Los Alamos."[53] Like many other young physicists, Feynman soon fell under the spell of the charismatic Oppenheimer, who telephoned Feynman long distance from Chicago to inform him that he had found a Presbyterian sanatorium in Albuquerque, New Mexico for Arline. They were among the first to depart for New Mexico, leaving on a train on March 28, 1943. The railroad supplied Arline with a wheelchair, and Feynman paid extra for a private room for her. There they spent their wedding anniversary.[54] 152ee80cbc

digital painting software free download for windows 7

once upon a time in uganda download

gorilla games app download