English contains several sound homographs, all with distinct histories. For example, the sound that means "something heard" descends from Latin sonus ("sound"), whereas the sound that means "to measure the depth of water" traces to Middle French sonde ("sounding line"). Another sound, as in "of sound mind and body," is the contemporary form of Old English's gesund. Gesund is related to several words in other languages, such as Old Saxon gisund ("sound"), Old Frisian sund ("fresh, unharmed, healthy"), and Gothic swinths ("sound" or "healthy"). Another relative is Old High German's gisunt ("healthy"), which led to modern German's gesund, the root of gesundheit.

In geography, a sound is a smaller body of water usually connected to a sea or an ocean. A sound may be an inlet that is deeper than a bight and wider than a fjord; or a narrow sea channel or an ocean channel between two land masses, such as a strait; or also a lagoon between a barrier island and the mainland.[1][2]


Dog Sound


Download 🔥 https://urlin.us/2y2PY9 🔥



A sound is often formed by the seas flooding a river valley. This produces a long inlet where the sloping valley hillsides descend to sea-level and continue beneath the water to form a sloping sea floor. These sounds are more appropriately called ria. The Marlborough Sounds in New Zealand are good examples of this type of formation.

Sometimes a sound is produced by a glacier carving out a valley on a coast then receding, or the sea invading a glacier valley. The glacier produces a sound that often has steep, near vertical sides that extend deep underwater. The sea floor is often flat and deeper at the landward end than the seaward end, due to glacial moraine deposits. This type of sound is more properly termed a fjord (or fiord). The sounds in Fiordland, New Zealand, have been formed this way.

In the more general northern European usage, a sound is a strait or the narrowest part of a strait. In Scandinavia and around the Baltic Sea, there are more than a hundred straits named Sund, mostly named for the island they separate from the continent or a larger island.

In areas explored by the British in the late 18th century, particularly the northwest coast of North America, the term "sound" was applied to inlets containing large islands, such as Howe Sound in British Columbia and Puget Sound in the U.S. state of Washington. It was also applied to bodies of open water not fully open to the ocean, such as Caamao Sound or Queen Charlotte Sound in Canada, or broadenings or mergings at the openings of inlets, like Cross Sound in Alaska and Fitz Hugh Sound in British Columbia.

Along the east coast and Gulf Coast of the United States, a number of bodies of water that separate islands from the mainland are called "sounds". Long Island Sound separates Long Island from the eastern shores of the Bronx, Westchester County, and southern Connecticut. Similarly, in North Carolina, a number of large lagoons lie between the mainland and its barrier beaches, the Outer Banks. These include Pamlico Sound, Albemarle Sound, Bogue Sound, and several others. The Mississippi Sound separates the Gulf of Mexico from the mainland, along much of the gulf coasts of Alabama and Mississippi.

In physics, sound is a vibration that propagates as an acoustic wave through a transmission medium such as a gas, liquid or solid.In human physiology and psychology, sound is the reception of such waves and their perception by the brain.[1] Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 kHz are known as ultrasound and are not audible to humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges.

Acoustics is the interdisciplinary science that deals with the study of mechanical waves in gasses, liquids, and solids including vibration, sound, ultrasound, and infrasound. A scientist who works in the field of acoustics is an acoustician, while someone working in the field of acoustical engineering may be called an acoustical engineer.[2] An audio engineer, on the other hand, is concerned with the recording, manipulation, mixing, and reproduction of sound.

Applications of acoustics are found in almost all aspects of modern society, subdisciplines include aeroacoustics, audio signal processing, architectural acoustics, bioacoustics, electro-acoustics, environmental noise, musical acoustics, noise control, psychoacoustics, speech, ultrasound, underwater acoustics, and vibration.[3]

Sound is defined as "(a) Oscillation in pressure, stress, particle displacement, particle velocity, etc., propagated in a medium with internal forces (e.g., elastic or viscous), or the superposition of such propagated oscillation. (b) Auditory sensation evoked by the oscillation described in (a)."[4] Sound can be viewed as a wave motion in air or other elastic media. In this case, sound is a stimulus. Sound can also be viewed as an excitation of the hearing mechanism that results in the perception of sound. In this case, sound is a sensation.

Sound can propagate through a medium such as air, water and solids as longitudinal waves and also as a transverse wave in solids. The sound waves are generated by a sound source, such as the vibrating diaphragm of a stereo speaker. The sound source creates vibrations in the surrounding medium. As the source continues to vibrate the medium, the vibrations propagate away from the source at the speed of sound, thus forming the sound wave. At a fixed distance from the source, the pressure, velocity, and displacement of the medium vary in time. At an instant in time, the pressure, velocity, and displacement vary in space. The particles of the medium do not travel with the sound wave. This is intuitively obvious for a solid, and the same is true for liquids and gases (that is, the vibrations of particles in the gas or liquid transport the vibrations, while the average position of the particles over time does not change). During propagation, waves can be reflected, refracted, or attenuated by the medium.[5]

The mechanical vibrations that can be interpreted as sound can travel through all forms of matter: gases, liquids, solids, and plasmas. The matter that supports the sound is called the medium. Sound cannot travel through a vacuum.[6][7]

Sound is transmitted through gases, plasma, and liquids as longitudinal waves, also called compression waves. It requires a medium to propagate. Through solids, however, it can be transmitted as both longitudinal waves and transverse waves. Longitudinal sound waves are waves of alternating pressure deviations from the equilibrium pressure, causing local regions of compression and rarefaction, while transverse waves (in solids) are waves of alternating shear stress at right angle to the direction of propagation.

The energy carried by an oscillating sound wave converts back and forth between the potential energy of the extra compression (in case of longitudinal waves) or lateral displacement strain (in case of transverse waves) of the matter, and the kinetic energy of the displacement velocity of particles of the medium.

Although there are many complexities relating to the transmission of sounds, at the point of reception (i.e. the ears), sound is readily dividable into two simple elements: pressure and time. These fundamental elements form the basis of all sound waves. They can be used to describe, in absolute terms, every sound we hear.

In order to understand the sound more fully, a complex wave such as the one shown in a blue background on the right of this text, is usually separated into its component parts, which are a combination of various sound wave frequencies (and noise).[9][10][11]

Sound that is perceptible by humans has frequencies from about 20 Hz to 20,000 Hz. In air at standard temperature and pressure, the corresponding wavelengths of sound waves range from 17 m (56 ft) to 17 mm (0.67 in). Sometimes speed and direction are combined as a velocity vector; wave number and direction are combined as a wave vector.

The speed of sound depends on the medium the waves pass through, and is a fundamental property of the material. The first significant effort towards measurement of the speed of sound was made by Isaac Newton. He believed the speed of sound in a particular substance was equal to the square root of the pressure acting on it divided by its density:

In fresh water the speed of sound is approximately 1,482 m/s (5,335 km/h; 3,315 mph). In steel, the speed of sound is about 5,960 m/s (21,460 km/h; 13,330 mph). Sound moves the fastest in solid atomic hydrogen at about 36,000 m/s (129,600 km/h; 80,530 mph).[13][14]

Since the human ear does not have a flat spectral response, sound pressures are often frequency weighted so that the measured level matches perceived levels more closely. The International Electrotechnical Commission (IEC) has defined several weighting schemes. A-weighting attempts to match the response of the human ear to noise and A-weighted sound pressure levels are labeled dBA. C-weighting is used to measure peak levels.

A distinct use of the term sound from its use in physics is that in physiology and psychology, where the term refers to the subject of perception by the brain. The field of psychoacoustics is dedicated to such studies. Webster's dictionary defined sound as: "1. The sensation of hearing, that which is heard; specif.: a. Psychophysics. Sensation due to stimulation of the auditory nerves and auditory centers of the brain, usually by vibrations transmitted in a material medium, commonly air, affecting the organ of hearing. b. Physics. Vibrational energy which occasions such a sensation. Sound is propagated by progressive longitudinal vibratory disturbances (sound waves)."[15] This means that the correct response to the question: "if a tree falls in the forest with no one to hear it fall, does it make a sound?" is "yes", and "no", dependent on whether being answered using the physical, or the psychophysical definition, respectively. ff782bc1db

vital shelf bookshelf download

i can 39;t download google voice on my iphone

download aplikasi background eraser for pc

uum press download

apk download car racing