Deep Learning
for Geometric Computing
CVPR 2024 Workshop and Challenge
News
Watch the recordings of our workshop keynotes on our YouTube channel!
Our program is now available here.
Our award/attendance prizes are generously sponsored by Intel.
A new challenge is released: "Breaking Best: A Geometric Fracture Reassembly Challenge" and submissions are now open here.
Paper submissions are now open here!
Our workshop got accepted to CVPR 2024!
Important dates
Breaking Best Challenge submission deadline (training phase): June 3rd, 2024
Breaking Best Challenge submission deadline (validation phase): June 10th, 2024
Paper submission deadline: March 19, 2024
Acceptance notification: April 5, 2024
Camera-ready paper due: April 12, 2024
Workshop (full day): June 18th, 2024
Introduction
Computer vision approaches have made tremendous efforts toward understanding shape from various data formats, especially since entering the deep learning era. Although accurate results have been obtained in detection, recognition, and segmentation, there is less attention and research on extracting topological and geometric information from shapes. These geometric representations provide compact and intuitive abstractions for modeling, synthesis, compression, matching, and analysis. Extracting such representations is significantly different from segmentation and recognition tasks, as they contain both local and global information about the shape.
To advance the state of the art in topological and geometric shape analysis using deep learning, we aim to gather researchers from computer vision, computational geometry, computer graphics, and machine learning in this sixth edition of “Deep Learning for Geometric Computing” workshop at CVPR 2024. The workshop encapsulates competitions with prizes, proceedings, keynotes, paper presentations, and a fair and diverse environment for brainstorming about future research collaborations.
Topics covered
Boundary extraction from 2D/3D shapes
Geometric deep learning on 3D and higher dimensions
Generative methods for parametric representations
Novel shape descriptors and embeddings for geometric deep learning
Deep learning on non-Euclidean geometries
Transformation invariant shape abstractions
Shape abstraction in different domains
Synthetic data generation for data augmentation in geometric deep learning
Comparison of shape representations for efficient deep learning
Novel kernels and architectures specifically for 3D generative models
Eigen-spectra analysis and graph-based approaches for 3D data
Applications of geometric deep learning in different domains
Learning-based estimation of shape differential quantities
Detection of geometric feature lines from 3D data, including 3D point clouds and depth images
Geometric shape segmentation, including patch decomposition and sharp lines detection