Computer-aided drafting and design (CADD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations.
In Mechanical Design it is also known as Mechanical Design Automation or Computer Aided Drafting, which includes the process of creating a technical drawing with the use of CAD software. Manual Drafting of technical and engineering drawings convey information about shape and size, but with CAD software we can information such as materials, processes, dimensions, and tolerances, to application specific needs.
CAE or Computer-Aided Engineering is a term used to describe the procedure of the entire product engineering process, from design and virtual testing with sophisticated analytical algorithms to the planning of manufacturing. Computer-aided engineering is standard in almost any industry that uses some sort of design software to develop products. CAE is the next step in not only designing a product, but also supporting the engineering process, as it allows to perform tests and simulations of the product’s physical properties without needing a physical prototype. In the context of CAE, the most commonly used simulation analysis types include Finite Element Analysis, Computational Fluid Dynamics, Thermal Analysis, Multibody Dynamics and Optimizations.
When an engineer is tasked with designing a new product, e.g. a winning race car for the next season, aerodynamics play an important role in the engineering process. However, aerodynamic processes are not easily quantifiable during the concept phase. Usually the only way for the engineer to optimize his designs is to conduct physical tests on product prototypes. With the rise of computers and ever-growing computational power (thanks to Moore’s law!), the field of Computational Fluid Dynamics became a commonly applied tool for generating solutions for fluid flows with or without solid interaction. In a CFD analysis, the examination of fluid flow in accordance with its physical properties such as velocity, pressure, temperature, density and viscosity is conducted. To virtually generate a solution for a physical phenomenon associated with fluid flow, without compromise on accuracy, those properties have to be considered simultaneously. The software, which the analysis is conducted with is one of the key elements in generating a sustainable product development process, as the amount of physical prototypes can be reduced drastically.
The Finite Element Analysis (FEA) is the simulation of any given physical phenomenon using the numerical technique called Finite Element Method (FEM). Engineers use it to reduce the number of physical prototypes and experiments and optimize components in their design phase to develop better products, faster.
It is necessary to use mathematics to comprehensively understand and quantify any physical phenomena such as structural or fluid behavior, thermal transport, wave propagation, the growth of biological cells, etc. Most of these processes are described using Partial Differential Equations (PDEs). However, for a computer to solve these PDEs, numerical techniques have been developed over the last few decades and one of the prominent ones, today, is the Finite Element Analysis.