Kala, R. (2016). Advanced Driver Assistance Systems. In R. Kala (Ed.), On-Road Intelligent Vehicles (pp. 59–82). Elsevier.
Lucas, B.D. and Kanade, T., 1981, April. An iterative image registration technique with an application to stereo vision.
Baker, S. and Matthews, I., 2004. Lucas-kanade 20 years on: A unifying framework. International journal of computer vision, 56(3), pp.221-255.
Z. Kalal, K. Mikolajczyk, and J. Matas. Forwardbackward error: Automatic detection of tracking failures. In Proc. ICPR, pages 2756–2759. IEEE, 2010. 2, 3
M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3061–3070
C. Vogel, K. Schindler, and S. Roth, “Piecewise rigid scene flow,” in Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 1377–1384.
A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow with convolutional networks,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 2758–2766.
E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet 2.0: Evolution of optical flow estimation with deep networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2462–2470.
D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8934–8943.
M. D. Kampelmuhler, M. G. Muller, and C. Feichtenhofer, “Camera-based vehicle velocity estimation from monocular video,” in Computer Vision Winter Workshop (CVWW), 2018, 2018.
Akolkar, H., Ieng, S.-H., Benosman, R. (2020). Real-time high speed motion prediction using fast aperture-robust event-driven visual flow. Arxiv.Org.
Song, Z., Lu, J., Zhang, T., Li, H. (2020). End-to-end learning for inter-vehicle distance and relative velocity estimation in ADAS with a monocular camera. In arXiv [cs.CV].
D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe, “Multi-scale continuous crfs as sequential deep networks for monocular depth estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5354–5362.
H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep Ordinal Regression Net- work for Monocular Depth Estimation,” in IEEE Conference on Computer Vision and Pattern Recognition, 2018.
G. Brazil and X. Liu, “M3d-rpn: Monocular 3d region proposal network for object detection,” in Proceedings of the IEEE International Conference on Computer Vision, Seoul, South Korea, 2019.
Patil, V., Van Gansbeke, W., Dai, D., Van Gool, L. (2020). Don’t forget the past: Recurrent depth estimation from monocular video. IEEE Robotics and Automation Letters, 5(4), 6813–6820.
McCraith, R., Neumann, L., Vedaldi, A. (2021). Real time monocular vehicle velocity estima- tion using synthetic data. In arXiv [cs.CV].
Huang, K.-C., Huang, Y.-K., Hsu, W. H. (2021). Multi-stream attention learning for monocular vehicle velocity and inter-vehicle distance estimation. In arXiv [cs.CV].
Dai, Q., Patii, V., Hecker, S., Dai, D., Van Gool, L., Schindler, K. (2020). Self-supervised object motion and depth estimation from video. 2020 IEEE/CVF (CVPRW)
J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox and A. Geiger, "Sparsity Invariant CNNs," 2017 International Conference on 3D Vision (3DV), 2017, pp. 11-20
Zhang, Yunpeng, Jiwen Lu, and Jie Zhou. "Objects are different: Flexible monocular 3d object detection." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
Liu, Z., Zhou, D., Lu, F., Fang, J. and Zhang, L., 2021. Autoshape: Real-time shape-aware monocular 3d object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 15641-15650).
Yu, F., Wang, D., Shelhamer, E. and Darrell, T., 2018. Deep layer aggregation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2403-2412).
Loshchilov, I. and Hutter, F., 2019. Decoupled weight decay regularization (2017). arXiv preprint arXiv:1711.05101. 12