НАВЧАЛЬНА ПРОГРАМА
З МАТЕМАТИКИ
(АЛГЕБРА І ПОЧАТКИ АНАЛІЗУ ТА ГЕОМЕТРІЯ)
для учнів 10-11 класів загальноосвітніх навчальних закладів
Рівень стандарту
ПОЯСНЮВАЛЬНА ЗАПИСКА
Мета базової загальної середньої освіти: розвиток особистості, яка поєднує в собі творчий потенціал до навчання, ініціативність до саморозвитку та самонавчання в сучасних умовах, здатності ідентифікувати себе як важливу і відповідальну складову українського суспільства, яка готова змінювати і відстоювати національні цінності українського народу. Важливим чинником розвитку такої особистості є формування в учнів умінь застосовувати набуті знання у реальних життєвих ситуаціях, під час розв'язання практичних завдань та здатності визначати і обґрунтовувати власну життєву позицію.
Провідним засобом реалізації вказаної мети є запровадження компетентнісного підходу у навчально-виховний процес загальноосвітньої школи шляхом формування предметних і ключових компетентностей.
В основу побудови змісту та організації процесу навчання математики покладено компетентнісний підхід, відповідно до якого кінцевим результатом навчання предмета є сформовані певні компетентності, які сприятимуть здатності учня застосовувати свої знання в реальних життєвих ситуаціях, нести відповідальність за свої дії, брати повноцінну участь в житті суспільства.
Для успішної участі в сучасному суспільному житті особистість повинна володіти певними прийомами математичної діяльності та навичками їх застосувань до розв’язування практичних задач. Певної математичної підготовки і готовності її застосовувати вимагає і вивчення багатьох навчальних предметів загальноосвітньої школи. Значні вимоги до володіння математикою у розв’язуванні практичних задач ставлять сучасний ринок праці, отримання якісної професійної освіти, продовження освіти на наступних етапах. Тому одним із головних завдань цього курсу є забезпечення умов для досягнення кожним учнем практичної компетентності.
Практична компетентність передбачає, що випускник загальноосвітнього навчального закладу:
• вміє будувати і досліджувати найпростіші математичні моделі реальних об’єктів, процесів і явищ, задач, пов’язаних із ними, за допомогою математичних об’єктів, відповідних математичних задач;
• вміє оволодівати необхідною оперативною інформацією для розуміння постановки математичної задачі, її характеру й особливостей; уточнювати вихідні дані, мету задачі, знаходити необхідну додаткову інформацію, засоби розв’язування задачі; переформульовувати задачу; розчленовувати задачі на складові, встановлювати зв’язки між ними, складати план розв’язання задачі; вибирати засоби розв’язання задачі, їх порівнювати і застосовувати оптимальні; перевіряти правильність розв’язання задачі; аналізувати та інтерпретувати отриманий результат, оцінювати його придатність із різних позицій; узагальнювати задачу, всебічно її розглядати; приймати рішення за результатами розв’язання задачі;
• володіє технікою обчислень, раціонально поєднуючи усні, письмові, інструментальні обчислення, зокрема наближені;
• вміє проектувати і здійснювати алгоритмічну та евристичну діяльність на математичному матеріалі;
• вміє працювати з формулами (розуміти змістове значення кожного елемента формули, знаходити їх числові значення при заданих значеннях змінних, виражати одну змінну через інші);
• вміє читати і будувати графіки функціональних залежностей, досліджувати їх властивості;
• вміє класифікувати і конструювати геометричні фігури на площині й у просторі, встановлювати їх властивості, зображати просторові фігури та їх елементи, виконувати побудови на зображеннях;
• вміє вимірювати геометричні величини на площині й у просторі, які характеризують розміщення геометричних фігур (відстані, кути), знаходити кількісні характеристики фігур (площі та об’єми);
• вміє оцінювати шанси настання тих чи інших подій.
Практична компетентність є важливим показником якості математичної освіти, природничої підготовки молоді. Вона певного мірою свідчить про готовність молоді до повсякденного життя, до найважливіших видів суспільної діяльності, до оволодіння професійною освітою.
Формування навичок застосування математики є однією із головних цілей навчання математики. Радикальним засобом реалізації прикладної спрямованості шкільного курсу математики є широке систематичне застосування методу математичного моделювання протягом усього курсу. Це стосується введення понять, виявлення зв’язків між ними, характеру ілюстрацій, системи вправ і, нарешті, системи контролю. Інакше кажучи, математики треба так навчати, щоб учні вміли її застосовувати. Забезпечення прикладної спрямованості викладання математики сприяє формуванню стійких мотивів до навчання взагалі і до навчання математики зокрема.
Реалізація практичної спрямованості в процесі навчання математики означає:
1) створення запасу математичних моделей, які описують реальні явища і процеси, мають загальнокультурну значущість, а також вивчаються у суміжних предметах;
2) формування в учнів знань та вмінь, які необхідні для дослідження цих математичних моделей;
3) навчання учнів побудові і дослідженню найпростіших математичних моделей реальних явищ і процесів.
Практична спрямованість математичної освіти суттєво підвищується завдяки впровадженню інформаційно-комунікаційних засобів у навчання математики.
Одним із найважливіших засобів забезпечення практичної спрямованості навчання математики є встановлення міжпредметних зв’язків математики з іншими предметами, у першу чергу з природничими. Особливої уваги заслуговує встановлення, зв’язків між математикою та інформатикою — двома освітніми галузями, які є визначальними у підготовці особистості до життя у постіндустріальному, інформаційному суспільстві. Широке застосування інформаційно-комунікаційних засобів у навчанні математики доцільне для проведення математичних експериментів, практичних занять, інформаційного забезпечення, візуального інтерпретування математичної діяльності, проведення досліджень.
Крім того, навчання математики має зробити певний внесок у формування ключових компетентностей.
Ключові компетентності
1.Спілкування державною (і рідною у разі відмінності) мовами
Уміння: ставити запитання і розпізнавати проблему; міркувати, робити висновки на основі інформації, поданої в різних формах (у таблицях, діаграмах, на графіках); розуміти, пояснювати і перетворювати тексти математичних задач (усно і письмово), грамотно висловлюватися рідною мовою; доречно та коректно вживати в мовленні математичну термінологію, чітко, лаконічно та зрозуміло формулювати думку, аргументувати, доводити правильність тверджень; поповнювати свій словниковий запас.
Ставлення: розуміння важливості чітких та лаконічних формулювань.
Навчальні ресурси: означення понять, формулювання властивостей, доведення теорем, розв’язування задач.
2.Спілкування іноземними мовами.
Уміння: спілкуватися іноземною мовою з використанням числівників, математичних понять і найуживаніших термінів; ставити запитання, формулювати проблему; зіставляти математичний термін чи буквене позначення з його походженням з іноземної мови, правильно використовувати математичні терміни в повсякденному житті.
Ставлення: усвідомлення важливості вивчення іноземних мов для розуміння математичних термінів та позначень, пошуку інформації в іншомовних джерелах.
Навчальні ресурси: тексти іноземною мовою з використанням статистичних даних, математичних термінів.
3.Математична компетентність.
Уміння: оперувати числовою інформацією, геометричними об’єктами на площині та в просторі; встановлювати відношення між реальними об’єктами навколишньої дійсності (природними, культурними, технічними тощо); розв’язувати задачі, зокрема практичного змісту; будувати і досліджувати найпростіші математичні моделі реальних об'єктів, процесів і явищ, інтерпретувати та оцінювати результати; прогнозувати в контексті навчальних та практичних задач; використовувати математичні методи у життєвих ситуаціях.
Ставлення: усвідомлення значення математики для повноцінного життя в сучасному суспільстві, розвитку технологічного, економічного і оборонного потенціалу держави, успішного вивчення інших дисциплін.
Навчальні ресурси: розв'язування математичних задач, зокрема таких, що моделюють реальні життєві ситуації.
4.Основні компетентності у природничих науках і технологіях.
Уміння: розпізнавати проблеми, що виникають у довкіллі і які можна розв’язати засобами математики; будувати та досліджувати математичні моделі природних явищ і процесів.
Ставлення: усвідомлення важливості математики як універсальної мови науки, техніки та технологій.
Навчальні ресурси: складання графіків та діаграм, які ілюструють функціональні залежності результатів впливу людської діяльності на природу.
5.Інформаційно-цифрова компетентність
Уміння: структурувати дані; діяти за алгоритмом та складати алгоритми; визначати достатність даних для розв’язання задачі; використовувати різні знакові системи; знаходити інформацію та оцінювати її достовірність; доводити істинність тверджень.
Ставлення: критичне осмислення інформації та джерел її отримання; усвідомлення важливості ІКТ для ефективного розв’язування математичних задач.
Навчальні ресурси: візуалізація даних; побудова графіків та діаграм, зображень стереометричних фігур за допомогою програмних засобів.
6.Уміння вчитися впродовж життя
Уміння: визначати мету навчальної діяльності, відбирати й застосовувати потрібні знання та способи діяльності для досягнення цієї мети; організовувати та планувати свою навчальну діяльність; моделювати власну освітню траєкторію, аналізувати, контролювати, коригувати та оцінювати результати своєї навчальної діяльності; доводити правильність власного судження або визнавати помилковість.
Ставлення: усвідомлення власних освітніх потреб та цінності нових знань і вмінь; зацікавленість у пізнанні світу; розуміння важливості вчитися впродовж життя; прагнення до вдосконалення результатів своєї діяльності.
Навчальні ресурси: моделювання власної освітньої траєкторії; статистична інформація; історичні задачі; завдання ймовірнісного змісту.
7.Ініціативність і підприємливість
Уміння: генерувати нові ідеї, вирішувати життєві проблеми, аналізувати, прогнозувати, ухвалювати оптимальні рішення; використовувати критерії раціональності, практичності, ефективності та точності, з метою вибору най кращого рішення; аргументувати та захищати свою позицію, дискутувати; використовувати різні стратегії, шукаючи оптимальних способів розв’язання життєвого завдання.
Ставлення: ініціативність, відповідальність, упевненість у собі; переконаність, що успіх команди – це й особистий успіх; позитивне оцінювання та підтримка конструктивних ідей інших.
Навчальні ресурси: задачі підприємницького змісту (оптимізаційні задачі).
8.Соціальна та громадянська компетентності
Уміння: висловлювати власну думку, слухати і чути інших, оцінювати аргументи та змінювати думку на основі доказів; аргументувати та відстоювати свою позицію; ухвалювати аргументовані рішення в життєвих ситуаціях; співпрацювати в команді, виділяти та виконувати власну роль в командній роботі; аналізувати власну економічну ситуацію, родинний бюджет, користуючись математичними методами; орієнтуватися в широкому колі послуг і товарів на основі чітких критеріїв, робити споживчий вибір, спираючись, зокрема, і на математичні дані.
Ставлення: ощадливість і поміркованість; рівне ставлення до інших незалежно від статків, соціального походження; відповідальність за спільну справу; налаштованість на логічне обґрунтування позиції без передчасного переходу до висновків; повага до прав людини, активна позиція щодо боротьби із дискримінацією.
Навчальні ресурси: задачі соціального змісту.
9.Обізнаність та самовираження у сфері культури
Уміння: здійснювати необхідні розрахунки для встановлення пропорцій, відтворення перспективи, створення об’ємно-просторових композицій; унаочнювати математичні моделі, зображати фігури, графіки, рисунки, схеми, діаграми.
Ставлення: усвідомлення взаємозв’язку математики та культури на прикладах з архітектури, живопису, музики та ін.; розуміння важливості внеску математиків у загальносвітову культуру.
Навчальні ресурси: математичні моделі в різних видах мистецтва.
10.Екологічна грамотність і здорове життя.
Уміння: аналізувати і критично оцінювати соціально-економічні події в державі на основі статистичних даних; враховувати правові, етичні, екологічні і соціальні наслідки рішень; розпізнавати, як інтерпретації результатів вирішення проблем можуть бути використані для маніпулювання.
Ставлення: усвідомлення взаємозв’язку математики та екології на основі статистичних даних; ощадне та бережливе відношення до природних ресурсів, чистоти довкілля та дотримання санітарних норм побуту; розгляд порівняльної характеристики щодо вибору здорового способу життя; власна думка та позиція до зловживань алкоголю, нікотину тощо.
Навчальні ресурси: навчальні проекти, задачі соціально-економічного, екологічного змісту; задачі, які сприяють усвідомленню цінності здорового способу життя.
Наскрізні лінії та їх реалізація. У навчальній програмі виокремлюються такі наскрізні чотири лінії ключових компетентностей: "Екологічна безпека та сталий розвиток", "Громадянська відповідальність", "Здоров'я і безпека", "Підприємливість та фінансова грамотність", які спрямовані на формування в учнів здатності застосовувати знання й уміння у реальних життєвих ситуаціях.
Особливості оцінювання та ведення журналу. У кінці кожної теми з алгебри і початків аналізу та з геометрії вчитель проводить тематичне оцінювання. При виставленні тематичної оцінки враховуються всі види навчальної діяльності, що підлягали оцінюванню протягом вивчення теми.
АЛГЕБРА І ПОЧАТКИ АНАЛІЗУ 10-й клас
(54 год. I семестр — 16 год, 1 год на тиждень,
II семестр — 38 год, 2 год на тиждень, Резерв – 7 годин)
Очікувані результати навчально-пізнавальної діяльності учнів
Зміст навчального матеріалу
Тема 1. ФУНКЦІЇ, ЇХНІ ВЛАСТИВОСТІ ТА ГРАФІКИ, 15годин
Учень/учениця:
користується різними способами задання функцій;
знаходить область визначення функціональних залежностей; значення функцій при заданих значеннях аргументу і значення аргументу, за яких функція набуває даного значення;
встановлює за графіком функції її основні властивості;
встановлює властивості функцій;
обчислює та порівнює значення виразів, які містять степені з раціональними показниками, корені;
розпізнає та схематично зображує графіки степеневих функцій;
моделює реальні процеси за допомогою степеневих функцій.
Числові функції та їх властивості. Способи задання функцій. Парні та непарні функції.
Корінь n-го степеня. Арифметичний корінь n-го степеня, його властивості.
Степінь з раціональним показником, та його властивості
Степеневі функції, їхні властивості та графіки.
Тема 2. ТРИГОНОМЕТРИЧНІ ФУНКЦІЇ 18 годин
Учень/учениця:
вміє переходити від радіанної міри кута до градусної й навпаки;
встановлює відповідність між дійсними числами і точками на одиничному колі;
розпізнає і схематично будує графіки тригонометричних функцій;
ілюструє властивості тригонометричних функцій за допомогою графіків;
перетворює нескладні тригонометричні вирази;
застосовує тригонометричні функції до опису реальних процесів;
розв’язує найпростіші тригонометричні рівняння.
Синус, косинус, тангенс, кута. Радіанне вимірювання кутів.
Тригонометричні функції числового аргументу. Основні співвідношення між тригонометричними функціями одного аргументу. Формули зведення.
Періодичність функцій. Властивості та графіки тригонометричних функцій.
Формули додавання для тригонометричних функцій та наслідки з них.
Найпростіші тригонометричні рівняння.
Тема 3. ПОХІДНА ТА ЇЇ ЗАСТОСУВАННЯ 14 годин
Учень/учениця:
розуміє значення поняття похідної для опису реальних процесів, зокрема механічного руху;
знаходить швидкість зміни величини в точці; кутовий коефіцієнт і кут нахилу дотичної до графіка функції в даній точці;
диференціює функції, використовуючи таблицю похідних і правила диференціювання;
застосовує похідну для знаходження проміжків монотонності і екстремумів функції, побудови графіків;
знаходить найбільше і найменше значення функції;
розв’язує нескладні прикладні задачі на знаходження найбільших і найменших значень реальних величин.
Похідна функції, її геометричний і фізичний зміст.
Правила диференціювання.
Ознака сталості функції. Достатні умови зростання й спадання функції. Екстремуми функції.
Застосування похідної до дослідження функцій та побудови їхніх графіків. Найбільше і найменше значення функції на проміжку.
АЛГЕБРА І ПОЧАТКИ АНАЛІЗУ 11 клас
(54 год. I семестр — 16 год, 1 год на тиждень,
II семестр — 38 год, 2 год на тиждень, Резерв – 18 годин)
Очікувані результати навчально-пізнавальної діяльності учнів
Зміст навчального матеріалу
Тема 1. ПОКАЗНИКОВА ТА ЛОГАРИФМІЧНА ФУНКЦІЇ 16 годин
Учень/учениця:
розпізнає і будує графіки показникової і логарифмічної функцій;
ілюструє властивості показникової і логарифмічної функцій за допомогою графіків;
застосовує показникову та логарифмічну функції до опису реальних процесів;
розв’язує найпростіші показникові та логарифмічні рівняння і нерівності.
Властивості та графіки показникової функції.
Логарифми та їх властивості. Властивості та графік логарифмічної функції.
Найпростіші показникові та логарифмічні рівняння і нерівності.
Тема 2. ІНТЕГРАЛ ТА ЙОГО ЗАСТОСУВАННЯ 10 годин
Учень/учениця:
знаходить первісні за допомогою таблиці первісних та їх властивостей;
виділяє первісну, що задовольняє задані початкові умови;
обчислює інтеграл за допомогою таблиці первісних та їх властивостей;
знаходить площі криволінійних трапецій.
Первісна та її властивості.
Визначений інтеграл, його геометричний зміст.
Обчислення площ плоских фігур.
Тема 3. ЕЛЕМЕНТИ КОМБІНАТОРИКИ, ТЕОРІЇ ЙМОВІРНОСТЕЙ І МАТЕМАТИЧНОЇ СТАТИСТИКИ 10 годин
Учень/учениця:
розуміє що таке перестановки, розміщення, комбінації (без повторень), класичне визначення поняття ймовірності, що таке генеральна сукупність та вибірка, означення середнього значення, моди та медіани вибірки
обчислює відносну частоту події; кількість перестановок, розміщень, комбінацій; ймовірність події, користуючись її означенням і комбінаторними схемами;
пояснює зміст середніх показників та характеристик вибірки;
знаходить числові характеристики вибірки даних.
застосовує ймовірнісні характеристики навколишніх явищ для прийняття рішень
Елементи комбінаторики. Перестановки, розміщення, комбінації (без повторень).
Класичне визначення ймовірності випадкової події.
Вибіркові характеристики: розмах вибірки, мода, медіана, середнє значення. Графічне подання інформації про вибірку.
Геометрія. 10 клас
(51 год. I семестр — 32 год, 2 год на тиждень,
II семестр — 19 год, 1 год на тиждень, Резерв – 7 годин)
Очікувані результати навчально-пізнавальної діяльності учнів
Зміст навчального матеріалу
Тема 1. ПАРАЛЕЛЬНІСТЬ ПРЯМИХ І ПЛОЩИН У ПРОСТОРІ 17 годин
Учень/учениця:
називає основні поняття стереометрії;
розрізняє означувані та не означувані поняття, аксіоми та теореми;
формулює аксіоми стереометрії та наслідки з них;
застосовує аксіоми стереометрії та наслідки з них до розв’язання нескладних задач;
класифікує за певними ознаками взаємне розміщення прямих, прямих і площин, площин у просторі за кількістю їх спільних точок;
встановлює паралельність прямих, прямої та площини, двох площин;
з’ясовує, чи є дві прямі мимобіжними;
зображає фігури у просторі;
застосовує відношення паралельності між прямими і площинами у просторі до опису відношень між об’єктами навколишнього світу.
Основні поняття, аксіоми стереометрії та найпростіші наслідки з них.
Взаємне розміщення прямих у просторі. Паралельне проектування і його властивості. Зображення фігур у стереометрії. Паралельність прямої та площини. Паралельність площин.
Тема 2. ПЕРПЕНДИКУЛЯРНІСТЬ ПРЯМИХ І ПЛОЩИН У ПРОСТОРІ 17 годин
Учень/учениця:
встановлює та обґрунтовує перпендикулярність прямих, прямої та площини, двох площин;
формулює означення кута між прямими, прямою та площиною, площинами; теорему про три перпендикуляри;
застосовує відношення між прямими і площинами у просторі, відстані і кути у просторі до опису об’єктів навколишнього світу;
розв’язує задачі на знаходження відстаней та кутів в просторі, зокрема практичного місту.
Перпендикулярність прямих. Перпендикулярність прямої і площини. Теорема про три перпендикуляри. Перпендикулярність площин. Двогранний кут.
Вимірювання відстаней у просторі: від точки до площини, від прямої до площини, між площинами. Вимірювання кутів у просторі: між прямими, між прямою і площиною, між площинами.
Тема 3. КООРДИНАТИ І ВЕКТОРИ 10 годин
Учень/учениця:
користується аналогією між векторами і координатами на площині й у просторі;
усвідомлює важливість векторно-координатного методу в математиці;
виконує операції над векторами;
застосовує вектори для моделювання і обчислення геометричних і фізичних величин;
знаходить відстань між двома точками, координати середини відрізка, координати точок симетричних відносно початку координат та координатних площин;
використовує координати у просторі для вимірювання відстаней, кутів;
Прямокутні координати в просторі.
Координати середини відрізка. Відстань між двома точками.
Вектори у просторі. Операції над векторами. Формули для обчислення довжини вектора, кута між векторами, відстані між двома точками. Симетрія відносно початку координат та координатних площин
Геометрія. 11 клас
(51 год. I семестр — 32 год, 2 год на тиждень,
II семестр — 19 год, 1 год на тиждень, Резерв – 14 годин)
Очікувані результати навчально-пізнавальної діяльності учнів
Зміст навчального матеріалу
Тема 1. МНОГОГРАННИКИ 14 годин
Учень/учениця:
розпізнає основні види многогранників та їх елементи;
зображує основні види многогранників та їх елементи;
має уявлення про перерізи многогранника площиною;
формулює означення вказаних у змісті многогранників;
записує формули для обчислення площі бічної та повної поверхонь призми та піраміди
обчислює величини основних елементів многогранників;
застосовує вивчені формули і властивості до розв’язування задач, зокрема прикладного змісту.
Многогранник та його елементи. Опуклі многогранники. Призма. Пряма і правильна призми. Паралелепіпед. Піраміда. Правильна піраміда. Перерізи многогранників.
Площі бічної та повної поверхонь призми, піраміди.
Тема 2. ТІЛА ОБЕРТАННЯ 12 годин
Учень/учениця:
обчислює величини основних елементів тіл обертання;
застосовує властивості тіл обертання до розв’язування задач;
розпізнає види тіл обертання, їхні елементи; многогранники і тіла обертання у їх комбінаціях в об’єктах навколишнього світу.
Циліндр, конус, їх елементи. Перерізи циліндра і конуса: осьові перерізи циліндра і конуса; перерізи циліндра і конуса площинами, паралельними основі.
Куля і сфера. Переріз кулі площиною.
Тема 3. ОБ’ЄМИ ТА ПЛОЩІ ПОВЕРХОНЬ ГЕОМЕТРИЧНИХ ТІЛ 11 годин
Учень/учениця:
записує формули для обчислення об’ємів паралелепіпеда, призми, піраміди, циліндра, конуса, кулі, площ бічної та повної поверхонь циліндра, конуса, площі сфери;
має уявлення про об’єм тіла та його основні властивості;
розв’язує задачі на обчислення об’ємів і площ поверхонь геометричних тіл, зокрема прикладного змісту.
Поняття про об’єм тіла. Основні властивості об’ємів. Об’єми призми, паралелепіпеда, піраміди, циліндра, конуса, кулі.
Площі бічної та повної поверхонь циліндра, конуса. Площа сфери.