1. I. Beltiţă, D. Beltiţă, C*-rigidity of the Heisenberg group. Publ. Res. Inst. Math. Sci. 61 (2025), no. 3, 487--502.
2. I. Beltiţă, D. Beltiţă, The C*-algebras of completely solvable Lie groups are solvable. J. Lie Theory 35 (2025), no. 4, 719--736.
3. S. Burciu, Frobenius-Perron dimensions of conjugacy classes and an Ito-Michler-type result in modular fusion categories, J. Inst. Math. Jussieu 24 (2025), no. 6, 2523–2542.
4. D. Beltiţă, A. Dobrogowska, G. Jakimowicz, Cyclic Lie-Rinehart algebras. Journal of Algebra and Its Applications (va apare)
5. D. Beltiţă, K.-H. Neeb, Crowned Lie groups and nets of real subspaces. Preprint arXiv: 2506.16422 [math.RT], 43 pagini.
6. I. Beltiţă, D. Beltiţă, Strong C*-rigidity of the Heisenberg groups. Preprint arXiv:2508.08904v2.
D. Beltiţă, On the dual topology of Euclidean motion groups I, 28 Martie , 2025, 15:00
Sala 306-307 "Constantin Banica", IMAR (si Zoom)
D. Beltiţă, On the dual topology of Euclidean motion groups II, 3 Aprilie , 2025, 15:00
Sala 306-307 "Constantin Banica", IMAR (si Zoom)
D. Beltiţă, On the dual topology of Euclidean motion groups III, 10 Aprilie , 2025, 15:00
Sala 306-307 "Constantin Banica", IMAR (si Zoom)
Expuneri in conferinte
D. Beltiţă , On the C^∗ -algebraic rigidity of Heisenberg groups. Analytic and algebraic methods in physics XXII, 26 - 29 August 2025, Czech Technical University in Prague, Czechia. https://www.ujf.cas.cz/en/departments/department-of-theoretical-physics/scientific-events/conferences-workshops-schools/AAMP/
S. Burciu, Ito-Michler type properties for braided fusion categories . "Hopf25", Conference on Hopf algebras, quantum groups,
monoidal categories and related structures, 22-26 April, 2025 / ULB Brussels,
https://hopfalgb.ulb.be/Hopf2025/index.html
D. Beltiţă, On groups and their representations. IMAR Monthly Lecture, 29 January 2025, Institute of Mathematics "Simion Stoilow" of the Romanian Academy, Bucharest. https://www.imar.ro/~imar/2025/IML/afis-conflunara-DB.pdf
D. Beltiţă, Leaf spaces in Lie theory. Geometric Structures and Infinite-Dimensional Manifolds, 13-17 January 2025, The Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria. https://www.esi.ac.at/events/t2206/