[1] Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009 Apr 10;513(5):532-41. doi: 10.1002/cne.21974. PMID: 19226510.
[2] E. Cambria and B. White, ” Jumping NLP Curves: A Review of Natural Language Processing Research [Review Article ]”, in IEEE Computational Intelligence Magazine ,vol. 9, no 2,pp. 48-57,May 2014.
[3] Huang, T., 1996. Computer vision: Evolution and promise.
[4] Nkalubo, L., 2019, September. Integrating computer vision and natural language processing to guide blind movements. In FedCSIS (Position Papers) (pp. 91-96).
[5] Retto, J., 2017. Sophia, first citizen robot of the world. ResearchGate, URL: https://www. researchgate. net.
[6] Chowdhury, G.G., 2003. Natural language processing. Annual review of information science and technology, 37(1), pp.51-89.
[7] S. Deepika, and D. Apurva ,”Integrating Computer Vision and Natural Language Processing : Issues and Challenges “, Vnsgu Journal of Science and Technology , Vol.4,No1,pp.190-196,July,2015
[8] Younis, A., Shixin, L., Jn, S. and Hai, Z., 2020, January. Real-time object detection using pre-trained deep learning models MobileNet-SSD. In Proceedings of 2020 the 6th International Conference on Computing and Data Engineering (pp. 44-48).
[9] Wang, S.C., 2003. Artificial neural network. In Interdisciplinary computing in java programming (pp. 81-100). Springer, Boston, MA.
[10] Li, J., Chen, X., Hovy, E. and Jurafsky, D., 2015. Visualizing and understanding neural models in nlp. arXiv preprint arXiv:1506.01066.
[11] W., Budiharto, “Robust vision-based detection and grasping object for manipulator using SIFT keypoint detector, International Conference on Advanced Mechatronic Systems (ICAMechS 2014), Japan, pp. 448-452, 2014.
[12] H. Yeremia, N.A. Yuwono, P. Raymond, W. Budiharto, “Genetic algorithm and neural network for optical character recognition”, Journal of Computer Science, pp. 1435-1442, 2013.
[13] Budiharto, W., Gunawan, A.A., Suroso, J.S., Chowanda, A., Patrik, A. and Utama, G., 2018, April. Fast object detection for quadcopter drone using deep learning. In 2018 3rd International Conference on Computer and Communication Systems (ICCCS) (pp. 192-195). IEEE.
[14] Cocodataset.org. 2021. COCO - Common Objects in Context. [online] Available at: <https://cocodataset.org/> [Accessed 25 February 2021].
[15] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C.L., 2014, September. Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Springer, Cham.
[16] Medium. 2021. RetinaNet: how Focal Loss fixes Single-Shot Detection. [online] Available at: <https://towardsdatascience.com/retinanet-how-focal-loss-fixes-single-shot-detection-cb320e3bb0de> [Accessed 26 February 2021].
[17] Medium. 2021. RetinaNet: how Focal Loss fixes Single-Shot Detection. [online] Available at: <https://towardsdatascience.com/retinanet-how-focal-loss-fixes-single-shot-detection-cb320e3bb0de> [Accessed 26 February 2021].
[18] Medium. 2021. SSD object detection: Single Shot MultiBox Detector for real-time processing. [online] Available at: <https://jonathan-hui.medium.com/ssd-object-detection-single-shot-multibox-detector-for-real-time-processing-9bd8deac0e06> [Accessed 27 February 2021].
[19] Medium. 2021. Object Detection with SSD and MobileNet. [online] Available at: <https://medium.com/@aditya.kunar_52859/object-detection-with-ssd-and-mobilenet-aeedc5917ad0> [Accessed 28 February 2021].