12. Uniform periodic counterexamples to Carleson's convergence problem with polynomial symbols.
with X. Yu. arxiv:2408.13935
11. Bourgain's counterexample in the sequential convergence problem for the Schrödinger equation.
with C.-H. Cho. J. Fourier Anal. Appl. 31 (2025), 29. arXiv:2403.07253
10. Multifractality and intermittency in the limit evolution of polygonal vortex filaments
with V. Banica, A. R. Nahmod and L. Vega. Math. Ann. 391(2025), 2837–2899.. arxiv:2309.08114
Proceedings for the 50th Journées EDP 2024. Multifractality and polygonal vortex filaments
with V. Banica, A. R. Nahmod and L. Vega. Journées équations aux dérivées partielles (2024), Talk no. 1, 13 p. arxiv:2412.04926
9. Convergence over fractals for the periodic Schrödinger equation
with R. Lucà. Analysis and PDE 15-7 (2022) 1775-1805. arXiv:2005.07581
8. Counterexamples for the fractal Schrödinger convergence problem with an intermediate space trick.
with F. Ponce-Vanegas. Commun. Pure Appl. Anal. 21 (2022) 3777-3812 . arXiv:2112.04050
7. Pointwise convergence over fractals for dispersive equations with homogeneous symbol
with F. Ponce-Vanegas. J. Math. Anal. Appl. 515 (2022) 126385. arXiv:2108.10339
6. An analytical study of flatness and intermittency through Riemann's non-differentiable functions
with V. Vilaça Da Rocha. SIAM J. Math. Anal 54 (2022) 3575-3608 , arXiv:2103.12540
5. The Talbot effect as the fundamental solution to the free Schrödinger equation.
Portugal. Math. 78 (2021) 233-253. arXiv:2102.11962
4. Intermittency of Riemann's non-differentiable function through the fourth-order flatness
with A. Boritchev and V. Vilaça Da Rocha. J. Math. Phys. 62 (2021), 093101 , arXiv:1910.13191
3. On the Hausdorff dimension of Riemann's non-differentiable function.
Trans. Amer. Math. Soc. 374 (2021), 7679-7713 , arXiv:1910.02530.
2. Geometric differentiability of Riemann's non-differentiable function.
Adv. Math. 366 (2020) 107091 , arXiv:1910.02536.
1. Some geometric properties of Riemann's non-differentiable function.
C. R. Acad. Sci. Paris, Ser. I 357 (2019) 846–850 , arXiv:1907.05723.
3. Una nueva faceta geométrica de la función no diferenciable de Riemann. La Gaceta de la RSME 24 (2021) 273-300.
2. El teorema de Müntz-Szász sobre la aproximación de funciones continuas, TEMat 1 (2017) 31-44. (with Alejandro Más, Francisco Mengual, María Soria-Carro).
1. El efecto de Talbot: de la óptica a la ecuación de Schrödinger. TEMat 1 (2017) 91-106.
1.1. The Talbot effect: from optics to the Schrödinger equation. English adaptation.