Full Text Available The objective of this research was to evaluate the production of biomass of the aquatic macrophytes water hyacinth (Eichhornia crassipes and egeria (Egeria densa in three hydraulic detention times in a organic pisciculture effluent treatment system. The system was composed for 18 experimental tanks of 2.00 x 1.00 x 0.65m length, width and depth respectively, coated with polypropylene canvas. An entirely randomized 2 macrophytes x 3 hydraulic detention times (HDT and 3 repetitions. The HDT used was 4, 8, and 12 hours. The biomass production was evaluated at the end of the experiment which was extended at 08/07 to 19/08/2006. The water hyacinth showed the best results of biomass production (P0.05. For egeria the treatment that presented the best production of biomass was reached which TDH of 12 hours, being of 0.10 kg.m-2, followed for the HDT of 8 and 4 hours, not differing between the HDT (P>0.05. One concludes that the water hyacinth produced higher biomass than egeria in all of the HDT evaluated.O presente trabalho teve por o objetivo avaliar a produo de biomassa das macrfitas aquticas aguap (Eichhornia crassipes e egeria (Egeria densa em um sistema de tratamento de efluente de piscicultura orgnica, sob 3 condies de tempo de deteno hidrulica. O sistema foi composto por 18 tanques experimentais de 2,00 x 1,00 x 0,65 m de comprimento, largura e profundidade, respectivamente, revestidos com lona de polipropileno. O delineamento foi inteiramente casualizado, com 2 macrfitas, 3 tempos de deteno hidrulica (TDH e 3 repeties. Os TDH utilizados foram de 4, 8 e 12 horas. O sistema foi operado de 08/07 a 19/08/2006. A produo de biomassa foi avaliada ao final do experimento. O aguap apresentou os melhores resultados de produo de biomassa (P0,05. Para a egeria o tratamento que apresentou a melhor produo de biomassa foi no TDH de 12 horas, sendo de 0,10 kg.m- 2, seguido pelos TDH de 8 e 4 horas, no diferindo

Studies of metabolic and physiological bases of plant tolerance and hardening against drought are essential to improve genetic breeding programs, especially in productive species such as Pinus radiata. The exposure to different drought cycles is a highly effective tool that improves plant conditioning, but limited information is available about the mechanisms that modulate this process. To clarify this issue, six P. radiata breeds with well-known differences in drought tolerance were analyzed after two consecutive drought cycles. Survival rate, concentration of several metabolites such as free soluble amino acids and polyamines, and main plant hormones varied between them after drought hardening, while relative growth ratio and water potential at both predawn and dawn did not. Hardening induced a strong increase in total soluble amino acids in all breeds, accumulating mainly those implicated in the glutamate metabolism (GM), especially L-proline, in the most tolerant breeds. Other amino acids from GM such as -aminobutyric acid (GABA) and L-arginine (Arg) were also strongly increased. GABA pathway could improve the response against drought, whereas Arg acts as precursor for the synthesis of spermidine. This polyamine showed a positive relationship with the survival capacity, probably due to its role as antioxidant under stress conditions. Finally, drought hardening also induced changes in phytohormone content, showing each breed a different profile. Although all of them accumulated indole-3-acetic acid and jasmonic acid and reduced zeatin content in needles, significant differences were observed regarding abscisic acid, salicylic acid and mainly zeatin riboside. These results confirm that hardening is not only species-dependent but also an intraspecific processes controlled through metabolite changes. Copyright  2015 Elsevier GmbH. All rights reserved.


Ano Hana Sub Indo 720p Or 108034


DOWNLOAD 🔥 https://tinurll.com/2xYioZ 🔥



The radial growth of conifer trees proceeds from the dynamics of a merismatic tissue called vascular cambium or cambium. Cambium is a thin layer of active proliferating cells. The purpose of this paper was to model the main characteristics of cambial activity and its consecutive radial growth. Cell growth is under the control of the auxin hormone indole-3-acetic. The model is composed of a discrete part, which accounts for cellular proliferation, and a continuous part involving the transport of auxin. Cambium is modeled in a two-dimensional cross-section by a cellular automaton that describes the set of all its constitutive cells. Proliferation is defined as growth and division of cambial cells under neighbouring constraints, which can eliminate some cells from the cambium. The cell-growth rate is determined from auxin concentration, calculated with the continuous model. We studied the integration of each elementary cambial cell activity into the global coherent movement of macroscopic morphogenesis. Cases of normal and abnormal growth of Pinus radiata (D. Don) are modelled. Abnormal growth includes deformed trees where gravity influences auxin transport, producing heterogeneous radial growth. Cross-sectional microscopic views are also provided to validate the model's hypothesis and results. be457b7860

in Don Ke Baad Kaun in hindi free download

Immo Universal Decoding 3.2 Keygen Download Crackgolkesl

Shuddh Desi Romance 2 In Hindi 720p Torrent hartmaet

Doctor, I Love You movie 5 full movie in hindi dubbed download

DCrack's MegaPack For FSX Old With Lucky Patcher